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Abstract

In this document, I perform a Lie serie expansion to second order in mass in the
planetary Hamiltonian in order to obtain an analytical expression of the term in
front of exp(ιk · λ) with k ∈ Z3 and λ ∈ (R/2πR)3, at some degree in eccentricity
and inclination. I extend the python package celeries of J.B. Delisle with a function
PerHam3pla outputting that term at any degree in eccentricity and inclination.
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1 Expansion to first order in mass

1.1 Framework
I consider a planetary system with n planets of masses mi (1 ≤ i ≤ n) orbiting a star
of mass m0. In this work, i is an index, I is an inclination and ι =

√
−1. Working in

canonical heliocentric variables, the Hamiltonian of the system can be written (Laskar
and Robutel, 1995; Couturier, 2022, Eq. (2.53))

H(r̃, r) =
n∑

i=1

(
r̃2

i

2βi

− Gm0mi

ri

)
+

n∑
i=1

n∑
j=i+1

(
r̃i · r̃j

m0
− Gmimj

|ri − rj|

)
, (1)

where r̃j = βjvj, with vj the barycentric speed of planet j and rj its heliocentric position.
The reduced mass is βj = m0mj/ (m0 + mj). I work in Poincaré coordinates defined as

Λ = β
√

µa λ = M + ϖ,

D = Λ
(
1 −

√
1 − e2

)
−ϖ = −ω − Ω,

H = Λ
√

1 − e2 (1 − cos I) −Ω,

(2)

where (a, e, I, M, ω, Ω) are the usual elliptic elements and µj = G (m0 + mj), with G the
gravitational constant. Alternatively, I will use the complex Poincaré variables defined
by the canonical transformation

(D, H; −ϖ, −Ω) 7→
(
x =

√
D exp(ιϖ), y =

√
H exp(ιΩ); −ιx̄, −ιȳ

)
, (3)

as well as the non-canonical variables X = x
√

2/Λ = e exp(ιϖ)+O(e3) and Y = y/
√

2Λ =
I exp(ιΩ)/2 + O(I3) + O(Ie2).

1.2 Expansion in Poincaré coordinates
The first term of Eq. (1) is the Keplerian part of the Hamiltonian and corresponds to
star−planet interactions. It can be written as a function of Λ only, and reads

HK(Λ) = −
n∑

j=1

β3
j µ2

j

2Λ2
j

. (4)

The second term of Eq. (1) is the perturbative part of the Hamiltonian and corresponds
to planet−planet interactions. It is of characteristic size ε with respect to the Keplerian
part, where ε is defined as

ε = m1 + m2 + ... + mn

m0
. (5)

To emphasize the small size of the perturbation, I will write it εHP . Hereafter, a quantity
of order r in mass will be written with a factor εr. The perturbative part can be written

εHP =
n∑

i=1

n∑
j=i+1

εHi,j, (6)
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which emphasizes the fact that it only contains interactions between two planets. In
particular, at order 1 in mass, combinations of three or more angles will not appear. The
perturbative part due to pair (i, j) can be expanded in Xi, Xj, Yi and Yj as (Laskar and
Robutel, 1995, Eq. (73))

εHi,j =
∑

k∈Z2

∑
q∈N8

ΞXq1
i Xq2

j X̄q3
i X̄q4

j Y q5
i Y q6

j Ȳ q7
i Ȳ q8

j

 eι(k1λi+k2λj), (7)

where Ξ depends on Λi and Λj only. In order to prevent an infinite number of terms in
front of a given eι(k1λi+k2λj), this expression is truncated at some degree r in eccentricity
and inclination, and only terms such that |q1| + · · · + |q8| ≤ r are retained. After this
truncation, there are finitely many terms in front of eι(k1λi+k2λj), but a lot for large r.
However, the symmetries of the Hamiltonian reveal that most of them are zero.

1.3 Extended d’Alembert rule
The first symmetry is the invariance around the z-axis. Rotating around the z-axis, that
is, redefining the x and y axes, is equivalent to translate the angles of the problem by
some constant angle ϑ. Injecting the transformation (λ, ϖ, Ω) → (λ + ϑ, ϖ + ϑ, Ω + ϑ)
into Eq. (7), shows that the Hamiltonian is invariant by rotation around the z-axis if,
and only if, the tuples q = (q1, · · · , q8) ∈ N8 and k = (k1, k2) ∈ Z2 verify the d’Alembert
rule (Chenciner and Laskar, 1989, Sect. 6.1)

k1 + k2 + q1 + q2 − q3 − q4 + q5 + q6 − q7 − q8 = 0. (8)

Clearly, the dynamics of the system should not be affected by a redefinition of the x-axis,
and so Ξ = 0 whenever the d’Alembert rule is not verified.

The other symmetry to consider is the symmetry with respect to the plane (x, y).
Changing z into −z, the ascending node become the descending node and vice-versa, and
Ω is transformed into Ω + π. Because ω is the angle between the ascending node and the
periapsis, it is also transformed into ω + π. The mean anomaly M is unchanged as it is
defined from the periapsis which is unaffected by that symmetry. The angles ϖ = ω + Ω
and λ = M + ϖ are also unchanged. Injecting this transformation into Eq. (7) yields an
extension to the d’Alembert rule (Chenciner and Laskar, 1989, Sect. 6.1)

q5 + q6 + q7 + q8 = 0 mod 2. (9)

Since the dynamics should also not be affected by a symmetry with respect to the
plane (x, y), Ξ = 0 whenever the extension to the d’Alembert rule is not verified. The
d’Alembert rule and its extension, along with a truncation in eccentricity and inclination
at degree r, ensure that there are only a modest number of terms in front of eι(k1λi+k2λj)

at a small degree r.
However, Eq. (7) overall still contains infinitely many terms. For example, each

eι(pλi−(p+1)λj) contains terms of degree 1 for p ∈ Z. In practice, only the terms eι(k1λi+k2λj)

where k1λi +k2λj is a slow angle are retained, the others being discarded (averaged upon).
Even when fast angles are retained, a finite number of terms is assured using the fact
that Ξ goes to 0 when (k1, k2) goes to infinity (see Table 1).
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1.4 Expression as a function of the Laplace coefficients
The coefficients Ξ(Λi, Λj) appearing in Eq. (7) can be written as a function of the Laplace
coefficients b

(k)
s/2(αij) where s and k are integers (k being odd), αij = ai/aj and1 b

(k)
s/2(α) is

defined as
b

(k)
s/2(α) = 2

π

∫ π

0

(
1 − 2α cos θ + α2

)−s/2
cos kθ dθ. (10)

Using the recurrence relation (Brouwer and Clemence, 1961, p. 501)

b
(k)
s/2(α) = 2k − 2

2k − s

(
α + α−1

)
b

(k−1)
s/2 (α) − 2k + s − 4

2k − s
b

(k−2)
s/2 (α), (11)

and the fact that b
(−k)
s/2 (α) = b

(k)
s/2(α), it is easy to show that Ξ depends on b

(0)
s/2(α) and

b
(1)
s/2(α) only for some s. Furthermore, if |q1| + · · · + |q8| = r, then it can be shown that Ξ

depends on a unique value of s, given by (Laskar and Robutel, 1995, Eq. (75))

s = 1 + r + (r mod 2). (12)

Looking back at Eq. (1), the coefficient Ξ has contributions from the term in 1/ |ri − rj|,
usually called direct contributions, and contributions from the term in r̃i · r̃j, usually
called indirect contributions. The methods direct([k1, k2]) and indirect([k1, k2]) from class
PerHam of the python package celeries give the full coefficient in front of eι(k1λi+k2λj) in Eq.
(7). The method direct leaves out a factor −Gmimj/aj = −minjΛj/m0. Disregarding ε
in front of 1, the method indirect leaves out a factor α

−1/2
ij minjΛj/m0.

As an example, the term of εHi,j proportional to eι(λi−2λj) at degree 1 in eccentric-
ity/inclination is

mi

m0
njΛj (ΞiXi + ΞjXj) ,

Ξi = −1
3

α−1
ij b

(1)
3/2(αij) + 1

2
b

(0)
3/2(αij) − 7

12
αijb

(1)
3/2(αij) + 5

4
α2

ijb
(0)
3/2(αij) − 5

6
α3

ijb
(1)
3/2(αij),

Ξj = 1
2

b
(1)
3/2(αij) − 5

4
αijb

(0)
3/2(αij) + 3

4
α2

ijb
(1)
3/2(αij) + 1

2
α

−1/2
ij .

(13)

Of course, the Hamiltonian is real, so the term of εHP proportional to eι(−λi+2λj) is the
complex conjugated of Eq. (13). At degree 1, these are the only terms in front of eι(λi−2λj).
In particular, there is no dependency in Yi and Yj, as can be deduced from the d’Alembert
rule and its extension.

In Table 1, I show that Eq. (7) can be reduced to a finite number of terms even when
fast angles are not averaged, using the fact that Ξ goes to 0 when (k1, k2) goes to infinity.

p 1 2 5 20 50
Ξi 0.81133 0.69751 0.33960 0.0030273 0.000000715

−Ξj 0.44033 0.93170 0.47044 0.0042894 0.000000954

Table 1 — Coefficients Ξi and Ξj , respectively in front of Xie
ι(pλi−(p+1)λj) and Xjeι(pλi−(p+1)λj),

evaluated at αij = 0.7, for some values of p. Both coefficients go to 0 when p goes to infinity.

1It is assumed that i is the inner planet of the pair and j is the outer one. Hence 0 < αij < 1.

https://gitlab.unige.ch/delisle/celeries
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2 Expansion to second order in mass
The Hamiltonian is H = HK + εHP . In particular, it does not contain terms of order ε2

or more without further approximations. Terms of order 2 in ε appear when averaging
εHP over fast circulating angles. When the angle k1λi +k2λj is fast-circulating (when the
pair (i, j) is far from resonance k1 : −k2), then the term eι(k1λi+k2λj) in εHi,j averages to 0
and can be removed from εHP without affecting the dynamics too much. This procedure
is justified mathematically using perturbation theory, and yields terms of order ε2 in the
Hamiltonian.

2.1 Perturbation theory : Lie serie expansion
The Hamiltonian of the planetary system being studied is

H(Λ, x, y; λ, −ιx̄, −ιȳ) = HK(Λ) + εHP (Λ, x, y; λ, −ιx̄, −ιȳ). (14)

Since ε � 1, it is quasi-integrable, and if ε were to be neglected, its trajectories would
simply be

ẋ = ι
∂HK

∂x̄
= 0 ⇒ x(t) = x0 ⇒ e(t) = e0 and ϖ(t) = ϖ0,

ẏ = ι
∂HK

∂ȳ
= 0 ⇒ y(t) = y0 ⇒ I(t) = I0 and Ω(t) = Ω0,

Λ̇ = ∂HK

∂λ
= 0 ⇒ Λ(t) = Λ0 ⇒ a(t) = a0,

λ̇ = ∂HK

∂Λ := n ⇒ λ(t) = λ0 + nt.

(15)

Disregarding ε is too rough of an approximation because it is equivalent to disregarding
planet−planet interactions. In order to do better than that, I will look for a change of
variable

Ψ : R6n → R6n

(Λ, x, y; λ, −ιx̄, −ιȳ) 7→
(
Λ′, x′, y′; λ′, −ιx̄′, −ιȳ′

)
,

(16)

close to the identity, such that

Ȟ(Λ′, x′, y′; λ′, −ιx̄′, −ιȳ′) = H(Λ, x, y; λ, −ιx̄, −ιȳ)
= Ȟ0(Λ′) + εȞ1 + ε2Ȟ2(Λ′, x′, y′; λ′, −ιx̄′, −ιȳ′),

(17)

where Ȟ = H ◦ Ψ−1 and Ȟ1 = 〈HP 〉. The operator 〈·〉 denotes the average over the fast
combinations of 2-planet angles k1λi + k2λj in Eq. (7). That is to say, Ȟ1 depends only
on slow combinations of angles. In order to ensure a canonical transformation, I choose
for Ψ the flow at time −1 of a generator χ that I will constrain in such a way that only
slow angles appear in εȞ1.

Ψ = Φεχ(−1, ·), or equivalently Ψ−1 = Φεχ(1, ·). (18)
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For more details about flows, generators and perturbation theory, refer to Couturier,
2022, Sects. 2.1.3 & 2.2.2, and reference therein. I define the Lie derivative of χ as the
time-derivative along the trajectories of χ, that is

Lχ = {χ, ·} = d

dt

∣∣∣∣
χ

=

∂χ

∂Λ′ · ∂

∂λ′ − ∂χ

∂λ′ · ∂

∂Λ′ + ι
∂χ

∂x′ · ∂

∂x̄′ − ι
∂χ

∂x̄′ · ∂

∂x′ + ι
∂χ

∂y′ · ∂

∂ȳ′ − ι
∂χ

∂ȳ′ · ∂

∂y′ .

(19)

I can now give Ȟ as the Taylor expansion

Ȟ = H ◦ Ψ−1 = H ◦ Φεχ(1, ·) =
+∞∑
j=0

L(j)
εχ

j!
(H) = eεLχ(H), (20)

where L(j)
εχ denotes the jth iteration of the Lie derivative, or the jth time-derivative along

the flow of εχ. If I expand Eq. (20) to second order in ε, I obtain

Ȟ0 + εȞ1 + ε2Ȟ2 = HK + ε
(
HP + {χ, HK}

)
+ ε2

(
{χ, HP } + 1

2
{χ, {χ, HK}}

)
, (21)

and in order to achieve the form (17), I constrain the generator of the transformation
with the cohomological equation

HP − 〈HP 〉 = {HK , χ} . (22)

The cohomological Eq. (22) now constrains the generator χ. Injecting it into Eq. (21),
the expression of the Hamiltonian at second order in mass is

Ȟ2 = 1
2

{χ, HP + 〈HP 〉} . (23)

The Hamiltonian at second order in mass is entirely determined by Eq. (23) provided
that the generator χ can be extracted from Eq. (22). To do so, I write (see Eq. (6))

χ =
n∑

i=1

n∑
j=i+1

χi,j, HP =
n∑

i=1

n∑
j=i+1

Hi,j, (24)

and then in the Fourier domain

χi,j =
∑

k∈Z2\(0,0)
χkeι(k1λi+k2λj), Hi,j − 〈Hi,j〉 =

∑
k∈Z2\(0,0)

hkeι(k1λi+k2λj). (25)

Injecting into Eq. (22) and using ∂HK/∂Λ = n yields

χk = −ιhk

k1ni + k2nj

. (26)

When the 2-planet angle k1λi +k2λj is among the combinations averaged by 〈·〉, the corre-
sponding coefficient hk is non-zero in Eq. (26). If furthermore the averaged combination
is a slow angle, then the denominator can be very small, and the transformation Ψ can
be very far from identity. However, as long as the operator 〈·〉 averages only over fast
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Fig. 1 — Schema of the transformation Ψ

angles, then the denominator of Eq. (26) is of order unity when hk is non-zero, and Ψ is
a quasi-periodic transformation ε-close from identity.

In other words, the variables
(
Λ′, x′, y′; λ′, −ιx̄′, −ιȳ′

)
differ from the original non-

primed variables by a quasi-periodic transformation ε-close from identity. These new
variables contain the tendency of the trajectories, where the short-period variations were
removed (see the schema of Fig. 1), and are more useful for an analytical work than the
original variables. From now on, I will be working with Ȟ and the primed variables only
and I will omit the prime and the ˇ for clarity.

2.2 Expansion in Poincaré coordinates and d’Alembert rule
Analyzing Eqs. (23) and (24), it can be noticed that at second order in mass, the
Hamiltonian does depend on 3-planet angles. For example, considering the pair (i, j) =
(1, 2) on the left-side of the Poisson bracket in Eq. (23), and the pair (i, j) = (1, 3) on the
right-side yields terms of the form eι(k1λ1+k2λ2+k3λ3). Likewise, dependency on 2-planet,
1-planet and 0-planet angles remain in H2. Clearly, H2 has no dependency on 5-planet
angles or more. Dependency on 4-planet angles should come from brackets of the form{
eι(pλi+qλj), eι(rλk+sλl)

}
where (i, j, k, l) are all different, but then the sets of variables

on the left-side and right-side are disjoint and the bracket vanishes due to Eq. (19).
Therefore, H2 has no dependency on 4-planet angles and can be written

ε2H2 =
n∑

i=1

n∑
j=i+1

n∑
k=j+1

ε2Hi,j,k, (27)

which emphasizes the fact that it only contains interactions between three planets. Using
Eq. (7), I have2

Hi,j,k =
∑

k∈Z3

 ∑
q∈N12

ΞXq1
i Xq2

j Xq3
k X̄q4

i X̄q5
j X̄q6

k Y q7
i Y q8

j Y q9
k Ȳ q10

i Ȳ q11
j Ȳ q12

k

 eι(k1λi+k2λj+k3λk).

(28)
The considerations of symmetry stated in Sect. 1.3 remain valid at any order in mass,
and the d’Alembert rule and its extension read

k1 + k2 + k3 + q1 + q2 + q3 − q4 − q5 − q6 + q7 + q8 + q9 − q10 − q11 − q12 = 0,

q7 + q8 + q9 + q10 + q11 + q12 = 0 mod 2.
(29)

2k = (k1, k2, k3) is the 3-planet angle and k is the index of the outermost planet of the triplet.
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2.3 Practical considerations
From now on I will assume, without restriction to the generality and to lighten the
notations, that the 3-planet angle of interest is k1λ1 + k2λ2 + k3λ3. In order to obtain the
term of ε2H2 proportional to eι(k1λ1+k2λ2+k3λ3) at order r in eccentricity and inclination,
all Poisson brackets of the form

1
2

{
−ιhp

p1ni + p2nj

eι(p1λi+p2λj), hp′eι(p′
1λi′ +p′

2λj′)
}

, (30)

such that p1λi + p2λj + p′
1λi′ + p′

2λj′ = k1λ1 + k2λ2 + k3λ3, for (i, j, i′, j′) ∈ {1, 2, 3}4, have
to be considered in Eq. (23). If k1k2k3 6= 0, then the 4-tuple (i, j, i′, j′) must belong to
the set {(1, 2, 1, 3) , (1, 3, 1, 2) , (1, 3, 2, 3) , (2, 3, 1, 3) , (1, 2, 2, 3) , (2, 3, 1, 2)}. If k1k2k3 = 0,
then there are more possibilities for the value of (i, j, i′, j′). In fact, that tuple does
not even have to belong to {1, 2, 3}4 in that case. Indeed, if k3 = 0, even brackets of
the form {eι(p1λ1+p2λ5), eι(p′

1λ2+p′
2λ5)} can generate contributions of the form eι(k1λ1+k2λ2).

However, when k1k2k3 = 0, the angle k1λ1 + k2λ2 + k3λ3 also exists at order 1 in ε and
its contribution of second order is often not important. Therefore, I will restrict myself
to the case k1k2k3 6= 0 in this work.

The Poisson bracket in Eq. (30) must be of degree r or less in eccentricity and
inclination. If hp is of degree s and hp′ is of degree s′, then the full bracket is of degree
s + s′ if ss′ = 0 and of degree s + s′ − 2 if ss′ 6= 0 (by differentiating with respect to the
eccentricities and inclinations in Eq. (19)). The largest possible size for both s and s′ is
therefore r + 1 and εHP needs to be expanded at degree r + 1 to get ε2H2 at degree r.

For the 3-planet angle k1λ1+k2λ2+k3λ3, there are infinitely many brackets to consider
if k1k2k3 = 0. Even if a truncation in the size of Ξ can be set (see Table 1), far too many
Poisson brackets must be computed and the final analytical expression is ridiculously
untractable. However, when k1k2k3 6= 0, it is straightforward to notice that there are
only finitely many brackets to consider and to give them explicitly. This gives another
argument in favor of restricting oneself to k1k2k3 6= 0. Consider for instance the case
(i, j, i′, j′) = (1, 2, 1, 3). The reasoning is essentially the same for the five other possible
values of that tuple. Then the condition p1λi + p2λj + p′

1λi′ + p′
2λj′ = k1λ1 + k2λ2 + k3λ3

yields

p1 + p′
1 = k1,

p2 = k2,

p′
2 = k3.

(31)

The condition that the degree of hp and hp′ must be less than r + 1 furthermore adds the
bounds |p1 +p2| ≤ r +1 and |p′

1 +p′
2| ≤ r +1 because of the d’Alembert rule (see Eq. (8)).

Since p2 and p′
2 are forced to particular values, the equation p1 + p′

1 = k1 has only finitely
many solutions that satisfy these two additional bounds. As an example, for (k1, k2, k3) =
(2, −4, 3) at degree 1, assuming that all 2-planet angles are fast when defining 〈·〉, there
are a total of 24 Poisson brackets of the form (30) to compute, four for each value of the
tuple (i, j, i′, j′) ∈ {(1, 2, 1, 3) , (1, 3, 1, 2) , (1, 3, 2, 3) , (2, 3, 1, 3) , (1, 2, 2, 3) , (2, 3, 1, 2)}.
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2.4 Expression as a function of the Laplace coefficients
The method Angle of the module PerHam3pla of the python package celeries gives the
full coefficient in front of eι(k1λ1+k2λ2+k3λ3) in ε2H2 at any degree in eccentricity and
inclination, when k1k2k3 6= 0. It leaves out a factor m1m2n3Λ3/m2

0. The output of
this function depends on the Laplace coefficients b

(k)
s/2(α12), b

(k)
s/2(α13) and b

(k)
s/2(α23) with

k ∈ {0, 1} in virtue of Eq. (11). Because the Laplace coefficients depend on Λ, Ξ should
depend on db

(k)
s/2/dα as well. However, the relation

db
(k)
s/2

dα
= s2

s − 2k
b

(k−1)
(s+2)/2(α) +

(
s2 − ks

2k − s
α + ks

2k − s
α−1

)
b

(k)
(s+2)/2(α) (32)

is used to remove dependency on db
(k)
s/2/dα. From Eq. (12), the maximum value of s in

εHP at degree r in eccentricity and inclination is s = 1 + r + (r mod 2). Using Eq. (32),
the maximum value of s in ε2H2 is3

s = 3 + r + (r mod 2) . (33)

The module PerHam3pla takes the following set of parameters as argument:

• degree. The degree of expansion in eccentricity and inclination. No default value.

• ang2pla = [(i1, j1, p1, q1) , · · · , (im, jm, pm, qm)]. A set of m 2-planet angles that
should not be averaged when defining the operator 〈·〉. Angles p1λi1 + q1λj1 to
pmλim + qmλjm will not be averaged. (ik, jk) ∈ {(1, 2) , (1, 3) , (2, 3)}. Only the
fundamental of a 2-planet angle or its opposite must be mentioned. Harmonics
must not be mentioned (gcd(pk, qk) = 1). Defaults to [].

• n0 = (n1, n2, n3). The function can give its output evaluated at mean motions
given by that parameter. Units do not matter as only the ratios are needed. Semi-
major axes are obtained from ai/aj = (nj/ni)2/3 and do not need to be specified.
That parameter is only important if an evaluation is required and can be left to its
default value () otherwise.

• ev. A boolean deciding if the output should be evaluated at the nominal mean
motions provided. Defaults to False.

• spatial. A boolean deciding if the problem is planar (False) or 3D (True). The
output does not depend on Yi or Ȳi when False. Defaults to False.

• keplerian. A boolean deciding whether or not the equality k1n1 + k2n2 + k3n3 = 0
should be assumed True and used to simplify the output. Defaults to False.

• disregard13. A boolean parameter controlling if contributions from the pair (1, 3)
are disregarded. Defaults to False.

• disregardInd. A boolean parameter controlling if contributions from indirect
terms in εHP (coming from r̃i · r̃j) are disregarded. Defaults to False.

3No derivation with respect to Λ occurs when a term of the bracket in Eq. (30) is of degree r + 1.

https://gitlab.unige.ch/delisle/celeries
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• takeout_kn. In Eq. (30), the denominator (p1ni + p2nj)−1 depends on Λ through
∂nj/∂Λj = −3nj/Λj and cannot be taken out of the Poisson bracket a priori as it
disregards terms of order ε2. However, that denominator can still be factored out
of the Poisson bracket by setting this boolean to True. Defaults to False.

• verbose. A boolean determining if the method Angle prints what Poisson brackets
it computes. If False, the method is mute. Defaults to True.

The method Angle takes as single argument the tuple = (k1, k2, k3).

2.5 Application to K2-138
K2-138 is a planetary system 661 ± 7 light-years away with a 0.93M� star orbited by six
planets whose periods are given in Table 2. The masses are very poorly constrained but
are a few Earth masses for each planet.

planet b c d e f g
Pj 1 1.513 2.297 3.511 5.422 17.835

2π/Pj 2π 4.1529 2.7353 1.78955 1.15886 0.3523
n⋆

j 2π 4.1539 (5n⋆
c −2n⋆

b)/3 (5n⋆
d−2n⋆

c)/3 (5n⋆
e −2n⋆

d)/3 (4n⋆
f −2n⋆

e)/3

Table 2 — The K2-138 system. Periods are normalized by Pb = 2.353 days. The nominal
values n⋆

j are as close as possible from nj such that the derivatives of all Laplace angles are zero.

Triplets (b,c,d), (c,d,e) and (d,e,f) are close from the 3-planet resonance 2n1 − 5n2 +
3n3 = 0. This is a resonance of degree 0 in eccentricity and inclination. The triplet
(e,f,g) is close from the 3-planet resonance 2n1 − 4n2 + 3n3 = 0 which is of degree 1 in
eccentricity and inclination.

2.5.1 Triplet (b,c,d)

While the pairs (b,c) and (c,d) are already rather far from resonance 2 : 3, the triplet
(b,c,d) is close from a 0th degree 3-planet resonance since 2nb−5nc+3nd ≈ 0.0078. Denot-
ing (b,c,d) = (1, 2, 3), the 3-planet Laplace angle of interest is therefore ϕ = 2λ1−5λ2+3λ3.
According to the 3-planet d’Alembert rule (Eq. (29)), the term of H2 proportional to
eι(2λ1−5λ2+3λ3) at degree 2 in eccentricity and inclination writes

ε2H2 = 1
2

m1

m0

m2

m0
n3Λ3

Ξ +
∑

1≤i,j≤3
ΞijXiX̄j +

∑
1≤i,j≤3

Ξ′
ijYiȲj

 eιϕ. (34)

In particular, the eccentric and inclined dynamics are decoupled because of the extension
to the d’Alembert rule. Since all planets of K2-138 are transiting, I will disregard the
inclined dynamics altogether from now on. Because this 3-planet resonance exists at
degree 0, it is interesting to first understand the circular dynamics. At zeroth degree in
eccentricity, the harmonics of the resonant angle also contribute. Combining with the
complex conjugate to get a real Hamiltonian, I obtain

ε2H2 = m1

m0

m2

m0
n3Λ3

∑
j∈N⋆

Ξj cos jϕ (35)
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Evaluated at the nominal mean motions of Table 2, the coefficients Ξj quickly go to zero as
j goes to infinity. Making no approximation (pair (1, 3) and indirect terms are considered
and denominator is kept inside the Poisson bracket for derivation), I computed these
coefficients with the module PerHam3pla in python. In the first computation, I defined
the operator 〈·〉 by averaging over all 2-planet angles, while in the second computation,
the 2-planet angles 2λ1 − 3λ2 and 2λ2 − 3λ3 were considered slow and not averaged upon.
In that second case, terms of εHP depending on those 2-planets angles must be kept in
the Hamiltonian. In Table 3, the results of these computations are presented.

j 1 2 3 4 5 6 10
−Ξj 180.8599 0.74794 0.08100 0.01237 0.002187 0.0004195 0.000000831
−Ξ′

j −7.407405 0.74794 0.08100 0.01237 0.002187 0.0004195 0.000000831

Table 3 — Coefficients Ξj appearing in Eq. (35) evaluated at the nominal mean motions n⋆
j

of Table 2. From j = 2, the coefficients are very small and both computations coincide as the
denominators 2n1 − 3n2 and 2n2 − 3n3 never appear anymore in Eq. (30).

Since Ξ2 is negligible with respect to Ξ1, I will now limit myself to

ε2H2 = m1

m0

m2

m0
n3Λ3Ξ cos ϕ. (36)

The module PerHam3pla allows three approximations:

• All Poisson brackets involving the pair (1, 3) are disregarded (disregard13 is True),

• All indirect terms (coming from r̃i · r̃j) are disregarded (disregardInd is True),

• The denominator (p1ni + p2nj)−1 is factored out (takeout_kn is True).

In order to evaluate them, I computed Ξ in Eq. (36) with all eight possible combinations
of these approximations (True of False for each). In Table 4, approximation 100 means
that all Poisson brackets involving the pair (1, 3) are disregarded, but indirect terms
are considered and the denominator (p1ni + p2nj)−1 is not factored out of the Poisson
bracket.

In the case where 〈·〉 is defined by averaging over all 2-planet angles, and without
making any approximation (disregard13 = disregardInd = takeout_kn = False), I
provide here4 the analytical expression of Ξ in Eq. (36) as a function of the Laplace
coefficients.

2.5.2 Triplet (e,f,g)

While the pairs (e,f) and (f,g) are already rather far from resonance 2 : 3 and 1 : 3,
this triplet is very close from a 1st degree 3-planet resonance since 2ne − 4nf + 3ng ≈
0.00056. Denoting (e,f,g) = (1, 2, 3), the 3-planet Laplace angle of interest is therefore

4https://jeremycouturier.com/3pla/253.txt

https://jeremycouturier.com/3pla/253.txt
https://jeremycouturier.com/3pla/253.txt
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Appx. 000 001 010 011 100 101 110 111
−Ξ 180.860 182.604 180.860 182.604 181.627 183.639 181.627 183.639
Ξ′ 7.40740 5.66305 7.40740 5.66305 6.63983 4.62852 6.63983 4.62852

Table 4 — Coefficients Ξ appearing in Eq. (36) for all possible approximations evaluated at the
nominal mean motions n⋆

j of Table 2. The line with Ξ′ corresponds to the case where 2λ1 − 3λ2
and 2λ2 − 3λ3 are not averaged upon. For that 3-planet angle and that degree of expansion,
the indirect terms approximation has no influence, but that is not always the case.

ϕ = 2λ1 − 4λ2 + 3λ3. According to the 3-planet d’Alembert rule (Eq. (29)), the term of
H2 proportional to eι(2λ1−4λ2+3λ3) at degree 1 in eccentricity and inclination reads

ε2H2 = m1m2

m2
0

n3Λ3
(
Ξ1X̄1 + Ξ2X̄2 + Ξ3X̄3

)
eιϕ. (37)

In particular, the expansion to the d’Alembert rule shows that the problem is planar at
degree 1 in eccentricity and inclination. There are no terms of degree 0 and the harmonics
of ϕ play no role at lowest degree. Like for the triplet (b,c,d), I evaluate the quality of the
eight possible combinations of approximations by computing Ξ1, Ξ2 and Ξ3 in all cases.
Results are presented in Table 5.

In the case where 〈·〉 is defined by averaging over all 2-planet angles, and without
making any approximation (disregard13 = disregardInd = takeout_kn = False), I
provide here5 the analytical expressions of Ξ1, Ξ2 and Ξ3 in Eq. (37) as a function of the
Laplace coefficients.

Appx. 000 001 010 011 100 101 110 111
−Ξ1 0.231 0.2471 0.2661 0.3189 −0.076 −0.112 −0.042 −0.040
Ξ2 10.859 11.279 10.859 11.279 10.874 11.304 10.874 11.304

−Ξ3 20.548 21.258 20.548 21.258 21.395 22.283 21.395 22.283
−Ξ′

1 0.231 0.2471 0.2661 0.3189 −0.076 −0.112 −0.042 −0.040
−Ξ′

2 1.4925 1.0727 1.4925 1.0727 1.4770 1.0476 1.4770 1.0476
Ξ′

3 3.7489 3.0392 3.7489 3.0392 2.9017 2.0142 2.9017 2.0142

Table 5 — Coefficients Ξj appearing in Eq. (37) for all possible approximations evaluated at
the nominal mean motions n⋆

j of Table 2. The lines with Ξ′
j corresponds to the case where

2λ1 − 3λ2 and λ2 − 3λ3 are not averaged upon.

2.6 The 3-planet angle pλ1 − (p + q) λ2 + qλ3

In this subsection, I consider 3-planet angles k1λ1 + k2λ2 + k3λ3 where k1 + k2 + k3 = 0,
and k1k2k3 6= 0. For these angles, there exist non-zero integers (p, q) such that k1λ1 +
k2λ2 + k3λ3 = pλ1 − (p + q) λ2 + qλ3. That is for example the case of the triplet (b,c,d)
of K2-138 in Sect. 2.5.1 with p = 2 and q = 3. For these 3-planet angles, the d’Alembert

5https://jeremycouturier.com/3pla/243.txt

https://jeremycouturier.com/3pla/243.txt
https://jeremycouturier.com/3pla/243.txt
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rule (Eq. (29)) shows that terms of degree zero in eccentricity and inclination exist. I
will compute by hand the coefficient Ξ such that the Hamiltonian to second order in mass
and to degree zero reads

ε2H2 = m1m2

m2
0

n3Λ3Ξ cos(pλ1 − (p + q) λ2 + qλ3). (38)

Denoting ϕ = pλ1−(p + q) λ2+qλ3, the term cos ϕ in Eq. (38) comes from Ξ/2
(
eιϕ + e−ιϕ

)
,

so I will simply obtain and double the term in front of eιϕ. For the calculations to be
doable by hand, I disregard contributions from pair (1, 3) and from indirect terms. How-
ever, I do not factor the denominator (p1ni + p2nj)−1 out of the Poisson brackets. I define
the operator 〈·〉 (see Eq. (17)) by averaging over all 2-planet angles. There exist a total
of six brackets of the form of Eq. (30) that give a contribution in eιϕ. These are

−ι

2

m1

m0
n2Λ2

W
(p)
12

p (n1 − n2)
eιp(λ1−λ2),

m2

m0
n3Λ3W

(q)
23 e−ιq(λ2−λ3)

 ,

ι

2

m2

m0
n3Λ3

W
(q)
23

q (n2 − n3)
e−ιq(λ2−λ3),

m1

m0
n2Λ2W

(p)
12 eιp(λ1−λ2)

 ,

(39)

−ι

2

m1

m0
n2Λ2

V
(p)

12,>

pn1 − (p + 1) n2
x2e

ι(pλ1−(p+1)λ2),
m2

m0
n3Λ3V

(q−1)
23,< x̄2e

−ι((q−1)λ2−qλ3)

 ,

ι

2

m2

m0
n3Λ3

V
(q−1)

23,<

(q − 1) n2 − qn3
x̄2e

−ι((q−1)λ2−qλ3),
m1

m0
n2Λ2V

(p)
12,>x2e

ι(pλ1−(p+1)λ2)

 ,

(40)

−ι

2

m1

m0
n2Λ2

V
(−p)

12,>

pn1 − (p − 1) n2
x̄2e

ι(pλ1−(p−1)λ2),
m2

m0
n3Λ3V

(−q−1)
23,< x2e

−ι((q+1)λ2−qλ3)

 ,

ι

2

m2

m0
n3Λ3

V
(−q−1)

23,<

(q + 1) n2 − qn3
x2e

−ι((q+1)λ2−qλ3),
m1

m0
n2Λ2V

(−p)
12,> x̄2e

ι(pλ1−(p−1)λ2)

 .

(41)

For the two brackets (39), the operator {·, ·} reduces to ∂
∂Λ2

∂
∂λ2

− ∂
∂λ2

∂
∂Λ2

whereas {·, ·} =
ι ∂

∂x2
∂

∂x̄2
− ι ∂

∂x̄2
∂

∂x2
for the last four brackets. When indirect terms are disregarded, εHP is

expanded with (Petit, 2021, Eqs. (12) to (15))

W
(l)
ij = −1

2
b

(l)
1/2(αij),

V
(l)

ij,< = 1
2

√
2
Λi

(
l + 1 + αij

2
∂

∂αij

)
b

(l+1)
1/2 (αij),

V
(l)

ij,> = −1
2

√
2
Λj

(
l + 1

2
+ αij

2
∂

∂αij

)
b

(l)
1/2(αij),

(42)

and all six brackets are efficiently computed by hand using the expressions ∂αij/∂Λi =
2αij/Λi, ∂αij/∂Λj = −2αij/Λj and ∂nj/∂Λj = −3nj/Λj. A factor m1m2n3Λ3/m2

0 can
be immediately factored out of the first two brackets. For the last four brackets, nearly
everything can be factored out and I am left with {x2, x̄2} = − {x̄2, x2} = ι. In order to
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give the final result as a function of n2 and n3 only, I assume pn1 − (p + q) n2 + qn3 = 0.
I obtain

Ξ = n2

n2 − n3

b
(p)
1/2b

(q)
1/2 + α12b

(q)
1/2

db
(p)
1/2

dα12
+ p

q
α23b

(p)
1/2

db
(q)
1/2

dα23

+ 3p

2q

n2
2

(n2 − n3)2 b
(p)
1/2b

(q)
1/2 (43)

− n2/2
(q−1)n2−qn3

q(2p+1)b(p)
1/2b

(q)
1/2+qα12b

(q)
1/2

db
(p)
1/2

dα12
+
(1

2
+p
)

α23b
(p)
1/2

db
(q)
1/2

dα23
+ α13

2
db

(p)
1/2

dα12

db
(q)
1/2

dα23


+ n2/2

(q+1)n2−qn3

q(2p−1)b(p)
1/2b

(q)
1/2−qα12b

(q)
1/2

db
(p)
1/2

dα12
+
(1

2
−p
)

α23b
(p)
1/2

db
(q)
1/2

dα23
+ α13

2
db

(p)
1/2

dα12

db
(q)
1/2

dα23

 ,

where b
(p)
1/2 depends on α12 and b

(q)
1/2 depends on α23. α13 is a shorthand notation for α12α23.

The first, second and third lines of Eq. (43) correspond to brackets (39), (40) and (41),
respectively. The second term of the first line comes from deriving the denominators with
respect to Λ2 in Eq. (39) and would have been absent if I had factored the denominators
out of the Poisson brackets.

Fig. 2 — Value of −Ξ on the loci of the exact resonance 2n1 − 5n2 + 3n3 = 0. The green curve
is the exact value whereas the red curve is the approximation given by Eq. (43). The operator
〈·〉 was defined by averaging over all 2-planet angles. Ξ diverges to −∞ when both n1/n2 and
n2/n3 go to 3/2 because of denominators (2n1 − 3n2)−1 and (2n2 − 3n3)−1 in its expression.



References 15

The function Check3pla of the package verifies that the expression of Ξ given by
Eq. (43) is equal to twice the output of PerHam3pla when called with keplerian =
disregard13 = disregardInd = True and takeout_kn = False. Equation (43) comes
as a correction to Eq. (23) of Quillen, 2011 and Eq. (42) of Petit et al., 2020, which
are incorrect. In particular, Quillen disregards brackets (40) and (41), whereas Petit
disregards brackets (41).

In Fig. 2, I plot the coefficient Ξ appearing in Eq. (38) in the case (p, q) = (2, 3),
on the loci of the exact Keplerian resonance 2n1 − 5n2 + 3n3 = 0, for 3/2 < n1/n2 < 2
(3/2 < n2/n3 < 3). I compare the exact expression obtained without approximations
with Eq. (43).
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