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Abstract

In this document, I perform a Lie serie expansion to second order in mass in the
planetary Hamiltonian in order to obtain an analytical expression of the term in
front of exp(uk - A) with k € Z3 and A € (R/27R)?, at some degree in eccentricity
and inclination. I extend the python package celeries of J.B. Delisle with a function
PerHam3pla outputting that term at any degree in eccentricity and inclination.
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1 Expansion to first order in mass

1.1 Framework

I consider a planetary system with n planets of masses m; (1 < i < n) orbiting a star
of mass my. In this work, 7 is an index, I is an inclination and ¢+ = y/—1. Working in
canonical heliocentric variables, the Hamiltonian of the system can be written (Laskar

and Robutel, ; Couturier, , Eq. (2.53))
nen=5(E- ) B 5 ().

where 7; = [3;v;, with v; the barycentric speed of planet j and 7; its heliocentric position.
The reduced mass is 3; = mom;/ (mo + m;). I work in Poincaré coordinates defined as

D:A(l—\/l—ez) —w=—w — 2, (2)
H=AV1-e2(1—cosI) |-,

where (a,e, I, M,w, ) are the usual elliptic elements and p; = G (mo + m;), with G the
gravitational constant. Alternatively, I will use the complex Poincaré variables defined
by the canonical transformation

(D,H; —w,—Q) — (x = VDexp(1w),y = VH exp(1Q); —i, —1@) , (3)

as well as the non-canonical variables X = z,/2/A = eexp(1@)+0(e3) and Y = y/v2A =
Texp(1Q)/2 + O(I?) + O(Ie?).

1.2 Expansion in Poincaré coordinates

The first term of Eq. (1) is the Keplerian part of the Hamiltonian and corresponds to
star—planet interactions. It can be written as a function of A only, and reads

g2
Hi(h) = -y 1 a

j=1

The second term of Eq. (1) is the perturbative part of the Hamiltonian and corresponds
to planet—planet interactions. It is of characteristic size € with respect to the Keplerian

part, where ¢ is defined as
my+mo + ... +Mmy,

mo

(5)

To emphasize the small size of the perturbation, I will write it eHp. Hereafter, a quantity
of order r in mass will be written with a factor €”. The perturbative part can be written

E =

EHp = Z Z 67‘[1'7]‘, (6)

i=1 j=i+1
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which emphasizes the fact that it only contains interactions between two planets. In
particular, at order 1 in mass, combinations of three or more angles will not appear. The
perturbative part due to pair (i, j) can be expanded in X;, X;, Y; and Y; as (Laskar and
Robutel, , Eq. (73))

= Y (Z zx;ﬂX?X?XW%%W%%) T, (7)

keZ?2 \qeN8

where = depends on A; and A; only. In order to prevent an infinite number of terms in
front of a given e!¥12+k2A) this expression is truncated at some degree r in eccentricity
and inclination, and only terms such that |q;| + -+ + |gs| < r are retained. After this
truncation, there are finitely many terms in front of e‘(*1A+k2%) hut a lot for large 7.
However, the symmetries of the Hamiltonian reveal that most of them are zero.

1.3 Extended d’Alembert rule

The first symmetry is the invariance around the z-axis. Rotating around the z-axis, that
is, redefining the x and y axes, is equivalent to translate the angles of the problem by
some constant angle 9. Injecting the transformation (\,w,Q) — (A 4+ J,@w +9,Q + )
into Eq. (7), shows that the Hamiltonian is invariant by rotation around the z-axis if,
and only if, the tuples ¢ = (q1, -+ ,qs) € N® and k = (ky, ko) € Z?* verify the d’Alembert
rule (Chenciner and Laskar, , Sect. 6.1)

ki+ko+a+e—G—auta+qg—q—q=0. (8)

Clearly, the dynamics of the system should not be affected by a redefinition of the x-axis,
and so = = 0 whenever the d’Alembert rule is not verified.

The other symmetry to consider is the symmetry with respect to the plane (z,y).
Changing z into —z, the ascending node become the descending node and vice-versa, and
Q) is transformed into 2 + 7. Because w is the angle between the ascending node and the
periapsis, it is also transformed into w + 7. The mean anomaly M is unchanged as it is
defined from the periapsis which is unaffected by that symmetry. The angles w = w + 2
and A = M + w are also unchanged. Injecting this transformation into Eq. (7) yields an
extension to the d’Alembert rule (Chenciner and Laskar, , Sect. 6.1)

g5+ qs +q7+qgs =0 mod 2. (9)

Since the dynamics should also not be affected by a symmetry with respect to the
plane (z,y), & = 0 whenever the extension to the d’Alembert rule is not verified. The
d’Alembert rule and its extension, along with a truncation in eccentricity and inclination
at degree r, ensure that there are only a modest number of terms in front of e‘(*1rit+k2A;)
at a small degree r.

However, Eq. (7) overall still contains infinitely many terms. For example, each
e!PMi=(P+1A) contains terms of degree 1 for p € Z. In practice, only the terms e‘(F1ritk2A;)
where k1 \; + ko) is a slow angle are retained, the others being discarded (averaged upon).
Even when fast angles are retained, a finite number of terms is assured using the fact
that = goes to 0 when (k1, k2) goes to infinity (see Table 1).
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1.4 Expression as a function of the Laplace coefficients

The coefﬁcnents E(A;, A;) appearing in Eq. (7) can be written as a function of the Laplace
coefficients b' /Q(QU) where s and k are integers (k being odd), o;; = a;/a; and b5/2( a) is

defined as

2 (7 —s
bg;)z(a) = /0 (1 —2acosf + a2> 2 cos k6 db. (10)
Using the recurrence relation (Brouwer and Clemence, , p- 501)
k) 2k — 2 _ k 2k + 85— 4 fo—
bala) = S (ot ™) 805" (@) = = =0, 7(), (11)

and the fact that bg;zk )(a) = bg%(a), it is easy to show that = depends on bg%(a) and
bg})z(oz) only for some s. Furthermore, if |¢;| 4 - - + |gs| = 7, then it can be shown that =
depends on a unique value of s, given by (Laskar and Robutel, , Eq. (75))

s=14+r+(r mod?2). (12)

Looking back at Eq. (1), the coefficient = has contributions from the term in 1/ |r; — 7],
usually called direct contributions, and contributions from the term in 7; - 7;, usually
called indirect contributions. The methods direct([ky, ko)) and indirect([ky, ks]) from class
PerHam of the python package give the full coefficient in front of e*( 1A +52%3) in Eq.
(7). The method direct leaves out a factor —Gm;m;/a; = —m;n;\;/myg. Disregarding e
in front of 1, the method indirect leaves out a factor ozz-_jl/ 2mmjAj /myg.

As an example, the term of ¢, ; proportional to e!Xi=2%) at degree 1 in eccentric-
ity /inclination is

m; —_ —_
—njAj (:zXl + :ij) s

mo

— I ¢ 1 0 7 1 5) 5)

= = —ga lbg/)g(aij) + ibé/)Q(Oéij> — Eaijbg/é(ai]) + - b3/2(a”) 6a”b3/2(aij)’ (13)
1 5 0 3 ]_ _1 2

Of course, the Hamiltonian is real, so the term of e} p proportional to e/(=*+24) is the
complex conjugated of Eq. (13). At degree 1, these are the only terms in front of e*=2%).
In particular, there is no dependency in Y; and Y}, as can be deduced from the d’Alembert
rule and its extension.

In Table I, I show that Eq. (7) can be reduced to a finite number of terms even when
fast angles are not averaged, using the fact that = goes to 0 when (kq, ko) goes to infinity.

1 2 5 20 20

; 0.81133 0.69751 0.33960 0.0030273 0.000000715
—Z; 0.44033 0.93170 0.47044 0.0042894 0.000000954

=

[1]

Table 1 — Coefficients Z; and Z;, respectively in front of X;e!®P—P+DA) and X et Pri=+A;)
evaluated at a;; = 0.7, for some values of p. Both coefficients go to 0 when p goes to infinity.

Tt is assumed that i is the inner planet of the pair and j is the outer one. Hence 0 < «a;; < 1.
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2 Expansion to second order in mass

The Hamiltonian is H = Hx + eHp. In particular, it does not contain terms of order &2
or more without further approximations. Terms of order 2 in £ appear when averaging
eH p over fast circulating angles. When the angle kj\; 4+ k2); is fast-circulating (when the
pair (7, j) is far from resonance ky : —ky), then the term e*¥1A+k2%) in £, ; averages to 0
and can be removed from eH p without affecting the dynamics too much. This procedure
is justified mathematically using perturbation theory, and yields terms of order €2 in the
Hamiltonian.

2.1 Perturbation theory : Lie serie expansion
The Hamiltonian of the planetary system being studied is
HA, z,y; A\, —1x, —1y) = Hr(A) + eHp(A, z,y; X, —1., —1y). (14)

Since ¢ < 1, it is quasi-integrable, and if € were to be neglected, its trajectories would
simply be

T = [/(9;-:[; =0=x(t) = xo = e(t) = ey and w(t) = oy,
= La;?; — 0= y(t) = yo = I(t) = Io and Q(t) =
(15)
A:a;iK:OéA(t):Aoéa(t):ao,
C OHi B

Disregarding ¢ is too rough of an approximation because it is equivalent to disregarding
planet—planet interactions. In order to do better than that, I will look for a change of
variable

¥R — R™
— — / / / / =/ —/ (16)
(A7w7y;A7_Lwa_Ly> = (A » L 7y;A7_Lw7_Ly> 9
close to the identity, such that
7:2(1&/7 m/’ y/7 A,, —Li/, —LQ’) = H(A, xT,Yy, A, —Li', —LQ) (17)

= 7—Vl0(A’) +eH, + 527:[2(A’, 'y N, -z —uy'),

where H = H# o U~! and Hy = (Hp). The operator (-) denotes the average over the fast
combinations of 2-planet angles ki \; + koA; in Eq. (7). That is to say, #, depends only
on slow combinations of angles. In order to ensure a canonical transformation, I choose
for W the flow at time —1 of a generator x that I will constrain in such a way that only
slow angles appear in cH,.

U =&, (-1,-), orequivalently ¥'=o_(1,-). (18)



2.1 Perturbation theory : Lie serie expansion 6

For more details about flows, generators and perturbation theory, refer to Couturier,
, Sects. 2.1.3 & 2.2.2, and reference therein. I define the Lie derivative of y as the
time-derivative along the trajectories of x, that is

d
LX:{X7.}:£ fr—y
X

0 0 o 0 o 0o 9 o o o o
ON" OXN  oX oA ox' ox' ox' ox oy Oy Oy Oy’
I can now give H as the Taylor expansion
. +oo 1,G)
H= oW = Mo (1) = 3. 2 (H) = h (W), (20)
Jj=0

where LE:JX) denotes the ;' iteration of the Lie derivative, or the j* time-derivative along
the flow of ex. If I expand Eq. (20) to second order in ¢, I obtain

. . . 1
o + ey + 2y = Hy + ¢ (Hp iy HK}) 42 ({X, Hp}+ 5 {6 {x HK}}) @)

and in order to achieve the form (17), I constrain the generator of the transformation
with the cohomological equation

Hp — (Hp) = {HK,x} - (22)

The cohomological Eq. (22) now constrains the generator y. Injecting it into Eq. (21),
the expression of the Hamiltonian at second order in mass is

Hy = o (o e+ (He)) (23)

The Hamiltonian at second order in mass is entirely determined by Eq. (23) provided
that the generator x can be extracted from Eq. (22). To do so, I write (see Eq. (0))

X = Z Z Xi,js Hp = Z Z Hz’,ja (24)

and then in the Fourier domain

Xij = Z XkeL(klz\¢+k2)\j)’ Hi,j . <Hi,j> — Z hkeb(kl)\i+k2)\j). (25)
ke72\(0,0) ke72\(0,0)

Injecting into Eq. (22) and using OH /OA = n yields

—Lhk

. 2
klni + k?gnj ( 6)

Xk
When the 2-planet angle k1 \;+k2); is among the combinations averaged by (-), the corre-
sponding coefficient Ay is non-zero in Eq. (20). If furthermore the averaged combination
is a slow angle, then the denominator can be very small, and the transformation ¥ can
be very far from identity. However, as long as the operator (-) averages only over fast
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Fig. 1 — Schema of the transformation ¥

angles, then the denominator of Eq. (20) is of order unity when hy, is non-zero, and V¥ is
a quasi-periodic transformation e-close from identity.

In other words, the variables (A’, 'y N, -z, —y ) differ from the original non-
primed variables by a quasi-periodic transformation e-close from identity. These new
variables contain the tendency of the trajectories, where the short-period variations were
removed (see the schema of Fig. 1), and are more useful for an analytical work than the
original variables. From now on, I will be working with H and the primed variables only
and I will omit the prime and the ~ for clarity.

2.2 Expansion in Poincaré coordinates and d’Alembert rule

Analyzing Eqgs. (23) and (21), it can be noticed that at second order in mass, the
Hamiltonian does depend on 3-planet angles. For example, considering the pair (i, ) =
(1,2) on the left-side of the Poisson bracket in Eq. (23), and the pair (i, j) = (1,3) on the
right-side yields terms of the form et(F1Aitkadatksds) 1 jkewise, dependency on 2-planet,
1-planet and O-planet angles remain in H,. Clearly, Hs has no dependency on 5-planet
angles or more. Dependency on 4-planet angles should come from brackets of the form

elPritady) erhtsM) L wwhere (i, 7, k,1) are all different, but then the sets of variables
on the left-side and right-side are disjoint and the bracket vanishes due to Eq. (19).
Therefore, Hy has no dependency on 4-planet angles and can be written

2, :Z Z Z 52Hi,j,k> (27)

i=1 j=i+1 k=j+1

which emphasizes the fact that it only contains interactions between three planets. Using
Eq. (7), I have

L = v v v v v VI 97y 9899191019111/ 912 t(k1Ai+koNj+ksAg)
HZ,J,kZ(ZHXinXkXinXkYiY}YkE Yiryy )e s :

keZ3 \geN12
(28)
The considerations of symmetry stated in Sect. remain valid at any order in mass,
and the d’Alembert rule and its extension read
kithet+hs+a+a@+aG—a—06—06+ea+a+q—qo— g —q2=0, (29)

g7+ g8+ qo+qo+qu1 +q2=0 mod 2.
2k = (ky, ko, k3) is the 3-planet angle and k is the index of the outermost planet of the triplet.
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2.3 Practical considerations

From now on I will assume, without restriction to the generality and to lighten the
notations, that the 3-planet angle of interest is k1 A1 + ko Ao + k3A3. In order to obtain the
term of e2H, proportional to e‘(Fir1Fh2d2+ksds) at order r in eccentricity and inclination,
all Poisson brackets of the form

1 { —th GL(plAi+p2>\j), hp/€L<p/1)\i/+pl2)\j/)} : (30)
2 | pini + pan;

such that p1A; +paAj +pi A + PhAj = k1A + koo + ks Ag, for (4,5,4,5') € {1,2, 3}4, have
to be considered in Eq. (23). If k1koks # 0, then the 4-tuple (7, 7,4, j') must belong to
the set {(1,2,1,3),(1,3,1,2),(1,3,2,3),(2,3,1,3),(1,2,2,3),(2,3,1,2)}. If kykoks = 0,
then there are more possibilities for the value of (i,7,4,7). In fact, that tuple does
not even have to belong to {1,2,3}4 in that case. Indeed, if k3 = 0, even brackets of
the form {e'(Prhi+rzds) eb<p/1’\2+pl2>‘5)} can generate contributions of the form e!(F1ri+kzd2),
However, when kiksks = 0, the angle k1A + ko Ay + k33 also exists at order 1 in € and
its contribution of second order is often not important. Therefore, I will restrict myself
to the case kykoks # 0 in this work.

The Poisson bracket in Eq. (30) must be of degree r or less in eccentricity and
inclination. If hj, is of degree s and h, is of degree s, then the full bracket is of degree
s+ s if s’ =0 and of degree s + ' — 2 if ss’ # 0 (by differentiating with respect to the
eccentricities and inclinations in Eq. (19)). The largest possible size for both s and s is
therefore r + 1 and eHp needs to be expanded at degree r + 1 to get e2H, at degree 7.

For the 3-planet angle ki A1 +koAo+ k33, there are infinitely many brackets to consider
if k1koks = 0. Even if a truncation in the size of = can be set (see Table 1), far too many
Poisson brackets must be computed and the final analytical expression is ridiculously
untractable. However, when kikoks # 0, it is straightforward to notice that there are
only finitely many brackets to consider and to give them explicitly. This gives another
argument in favor of restricting oneself to kikoks # 0. Consider for instance the case
(1,7,7',5") = (1,2,1,3). The reasoning is essentially the same for the five other possible
values of that tuple. Then the condition p1A; + paA; + P A + poAjy = kid + kodo + ks)s
yields

p1+ Py = k1,
p2 = ko, (31)
p/z = ks.

The condition that the degree of h), and hy must be less than r 4 1 furthermore adds the
bounds |p; +pe| < r+1 and [p} +ph| < r+1 because of the d’Alembert rule (see Eq. (8)).
Since py and pj are forced to particular values, the equation p; +p| = k; has only finitely
many solutions that satisfy these two additional bounds. As an example, for (ky, ko, k3) =
(2,—4,3) at degree 1, assuming that all 2-planet angles are fast when defining (-), there
are a total of 24 Poisson brackets of the form (30) to compute, four for each value of the
tuple (i, 7,4, 5") € {(1,2,1,3),(1,3,1,2),(1,3,2,3),(2,3,1,3),(1,2,2,3),(2,3,1,2)}.
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2.4 Expression as a function of the Laplace coefficients

The method Angle of the module PerHamd3pla of the python package gives the
full coefficient in front of etFiritkzdetksds) in =23, at any degree in eccentricity and
inclination, when kjkoks # 0. It leaves out a factor mymansAz/m2. The output of
this function depends on the Laplace coefficients bg;)z(au), bgl;)2<0é13) and bg;)Z(OéQg) with
k € {0,1} in virtue of Eq. (11). Because the Laplace coefficients depend on A, = should
depend on dbg% /da as well. However, the relation

b)) 2 2 g k
s/2 S (k—1) S S S —1)\ 1(k)
do s5— 2k5b(8+2)/2<a) * ( % s * % — s > b(s+2)/2(a) (32)

is used to remove dependency on dbg’;; /da. From Eq. (12), the maximum value of s in
eHp at degree r in eccentricity and inclination is s = 1 + 7+ (r mod 2). Using Eq. (32),
the maximum value of s in e2H, is

s=34+r+(r mod?2). (33)
The module PerHam3pla takes the following set of parameters as argument:
o degree. The degree of expansion in eccentricity and inclination. No default value.

o ang2pla = [(i1,j1,p1,q1), " (bm, Jms Pm, Gm)]- A set of m 2-planet angles that
should not be averaged when defining the operator (-). Angles p1A;, + ¢1Aj, to
PmAi,, + @mAj,, will not be averaged. (i, Jjr) € {(1,2),(1,3),(2,3)}. Only the
fundamental of a 2-planet angle or its opposite must be mentioned. Harmonics
must not be mentioned (ged(py, gx) = 1). Defaults to [J.

e n0 = (ny,n9,n3). The function can give its output evaluated at mean motions
given by that parameter. Units do not matter as only the ratios are needed. Semi-
major axes are obtained from a;/a; = (n;/n;)*? and do not need to be specified.
That parameter is only important if an evaluation is required and can be left to its
default value () otherwise.

e ev. A boolean deciding if the output should be evaluated at the nominal mean
motions provided. Defaults to False.

« spatial. A boolean deciding if the problem is planar (False) or 3D (True). The
output does not depend on Y; or Y; when False. Defaults to False.

o keplerian. A boolean deciding whether or not the equality kin; + kong + ksng = 0
should be assumed True and used to simplify the output. Defaults to False.

« disregard13. A boolean parameter controlling if contributions from the pair (1, 3)
are disregarded. Defaults to False.

o disregardInd. A boolean parameter controlling if contributions from indirect
terms in eHp (coming from 7; - ¥;) are disregarded. Defaults to False.

3No derivation with respect to A occurs when a term of the bracket in Eq. (30) is of degree r + 1.
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« takeout_ kn. In Eq. (30), the denominator (pin; + pgnj)_l depends on A through
on;j/OA; = —3n;/A; and cannot be taken out of the Poisson bracket a priori as it
disregards terms of order £2. However, that denominator can still be factored out
of the Poisson bracket by setting this boolean to True. Defaults to False.

» verbose. A boolean determining if the method Angle prints what Poisson brackets
it computes. If False, the method is mute. Defaults to True.

The method Angle takes as single argument the tuple = (ky, ko, k3).

2.5 Application to K2-138

K2-138 is a planetary system 661 + 7 light-years away with a 0.93M, star orbited by six
planets whose periods are given in Table 2. The masses are very poorly constrained but
are a few Earth masses for each planet.

planet b ¢ d e f g
P; 1 1513 2.297 3.511 5.422 17.835
2r/P; 2w  4.1529 2.7353 1.78955 1.15886 0.3523

ny  2r 41539 (5nf—-2nf)/3  (5ni—2n%)/3  (5ng—2n3)/3 (4nf—2n})/3

Table 2 — The K2-138 system. Periods are normalized by P, = 2.353 days. The nominal

* are as close as possible from n; such that the derivatives of all Laplace angles are zero.

values n i

Triplets (b,c,d), (c,d,e) and (d,e,f) are close from the 3-planet resonance 2n; — 5ny +
3ng = 0. This is a resonance of degree 0 in eccentricity and inclination. The triplet
(e,f,g) is close from the 3-planet resonance 2n; — 4ny + 3ng = 0 which is of degree 1 in
eccentricity and inclination.

2.5.1 Triplet (b,c,d)

While the pairs (b,c) and (c,d) are already rather far from resonance 2 : 3, the triplet
(b,c,d) is close from a 0" degree 3-planet resonance since 2ny, —5n.+3nq &~ 0.0078. Denot-
ing (b,c,d) = (1,2, 3), the 3-planet Laplace angle of interest is therefore ¢ = 2A; —5A2+3A3.
According to the 3-planet d’Alembert rule (Eq. (29)), the term of Hy proportional to
e PM=5Aa+323) gt degree 2 in eccentricity and inclination writes

€2H2 - ;777/17712”3/\3 (E + Z EZJXZX] + Z E;]Y;?]) 6L¢. (34)
1<i,j<3 1<i,j<3

In particular, the eccentric and inclined dynamics are decoupled because of the extension
to the d’Alembert rule. Since all planets of K2-138 are transiting, I will disregard the
inclined dynamics altogether from now on. Because this 3-planet resonance exists at
degree 0, it is interesting to first understand the circular dynamics. At zeroth degree in
eccentricity, the harmonics of the resonant angle also contribute. Combining with the
complex conjugate to get a real Hamiltonian, I obtain

827'[2 = nfL(l),rnQ’flgAg Z Ej COSj¢ (35)
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Evaluated at the nominal mean motions of Table 2, the coefficients =; quickly go to zero as
j goes to infinity. Making no approximation (pair (1,3) and indirect terms are considered
and denominator is kept inside the Poisson bracket for derivation), I computed these
coefficients with the module PerHam3pla in python. In the first computation, I defined
the operator (-) by averaging over all 2-planet angles, while in the second computation,
the 2-planet angles 2A\; — 3y and 2\ — 3\3 were considered slow and not averaged upon.
In that second case, terms of eHp depending on those 2-planets angles must be kept in
the Hamiltonian. In Table 3, the results of these computations are presented.

] 1 2 3 4 5 6 10

—Z; 180.8599  0.74794 0.08100 0.01237 0.002187 0.0004195 0.000000831
]

;  —7.407405 0.74794 0.08100 0.01237 0.002187 0.0004195 0.000000831

Table 3 — Coefficients Z; appearing in Eq. (35) evaluated at the nominal mean motions n}
of Table 2. From j = 2, the coefficients are very small and both computations coincide as the
denominators 2n; — 3ng and 2ny — 3n3 never appear anymore in Eq. (30).

Since =5 is negligible with respect to =1, I will now limit myself to

2Hy = @@ngAgE oS . (36)

mo mo
The module PerHam3pla allows three approximations:
« All Poisson brackets involving the pair (1,3) are disregarded (disregard13 is True),
o All indirect terms (coming from #; - ¥;) are disregarded (disregardInd is True),
e The denominator (pi1n; + pon;) " is factored out (takeout kn is True).

In order to evaluate them, I computed = in Eq. (30) with all eight possible combinations
of these approximations (True of False for each). In Table 4, approximation 100 means
that all Poisson brackets involving the pair (1,3) are disregarded, but indirect terms
are considered and the denominator (pin; + pgnj)_l is not factored out of the Poisson
bracket.

In the case where (-) is defined by averaging over all 2-planet angles, and without
making any approximation (disregard13 = disregardInd = takeout__kn = False), I
provide the analytical expression of = in Eq. (30) as a function of the Laplace
coefficients.

2.5.2 Triplet (e,f,g)

While the pairs (e,f) and (f,g) are already rather far from resonance 2 : 3 and 1 : 3,
this triplet is very close from a 1% degree 3-planet resonance since 2n, — 4ng + 3ng ~
0.00056. Denoting (e,f,g) = (1,2,3), the 3-planet Laplace angle of interest is therefore

4
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Appx. 000 001 010 011 100 101 110 111

—=  180.860 182.604 180.860 182.604 181.627 183.639 181.627 183.639
= 7.40740 5.66305 7.40740 5.66305 6.63983 4.62852 6.63983 4.62852

Table 4 — Coefficients Z appearing in Eq. (36) for all possible approximations evaluated at the
nominal mean motions nj* of Table 2. The line with Z" corresponds to the case where 2\; — 3o
and 2\y — 3A3 are not averaged upon. For that 3-planet angle and that degree of expansion,
the indirect terms approximation has no influence, but that is not always the case.

¢ =2\ — 4y + 3X3. According to the 3-planet d’Alembert rule (Eq. (29)), the term of
H, proportional to e‘(?M1=422+3%3) at degree 1 in eccentricity and inclination reads
EHy = 1 nahs (21K + X + 23 Xs) €. (37)
mp

In particular, the expansion to the d’Alembert rule shows that the problem is planar at
degree 1 in eccentricity and inclination. There are no terms of degree 0 and the harmonics
of ¢ play no role at lowest degree. Like for the triplet (b,c,d), I evaluate the quality of the
eight possible combinations of approximations by computing =;, =, and =3 in all cases.
Results are presented in Table

In the case where (-) is defined by averaging over all 2-planet angles, and without
making any approximation (disregard13 = disregardInd = takeout_ kn = False), I
provide the analytical expressions of Z;, =5 and =3 in Eq. (37) as a function of the
Laplace coefficients.

Appx. 000 001 010 011 100 101 110 111

—=; 0231 0.2471 0.2661 0.3189 —-0.076 —0.112 —-0.042 —0.040
= 10.859 11.279 10.859 11.2v9 10.874 11.304 10.874 11.304
—=3  20.548 21.258 20.548 21.258 21.395 22.283 21.395 22.283
—=7  0.231 0.2471 0.2661 0.3189 —0.076 —0.112 —0.042 —0.040
—=5 14925 1.0727 1.4925 1.0727 1.4770 1.0476 1.4770 1.0476
=4 3.7489 3.0392 3.7489 3.0392 2.9017 2.0142 2.9017 2.0142

Table 5 — Coefficients Z; appearing in Eq. (37) for all possible approximations evaluated at
the nominal mean motions n; of Table 2. The lines with E; corresponds to the case where
2A1 — 3X2 and Ao — 3)A3 are not averaged upon.

2.6 The 3-planet angle p\; — (p + q) A2 + g3

In this subsection, I consider 3-planet angles ki A1 + koo + ksA3 where ky + ko + k3 = 0,
and kikoks # 0. For these angles, there exist non-zero integers (p,q) such that ki \; +
koda + ksAs = pA1 — (p + ¢) A2 + gA3. That is for example the case of the triplet (b,c,d)
of K2-138 in Sect. with p = 2 and ¢ = 3. For these 3-planet angles, the d’Alembert

5
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rule (Eq. (29)) shows that terms of degree zero in eccentricity and inclination exist. I
will compute by hand the coefficient = such that the Hamiltonian to second order in mass
and to degree zero reads

m1m2

XMy = n3A3=cos(pA1 — (p+ q) Ay + gA3). (38)

6
Denoting ¢ = pA1—(p + ¢) Aa+qA3, the term cos ¢ in Eq. (38) comes from =/2 (e“b + e‘L¢),
so I will simply obtain and double the term in front of e*. For the calculations to be
doable by hand, I disregard contributions from pair (1, 3) and from indirect terms. How-
ever, I do not factor the denominator (pyn; + pgnj)fl out of the Poisson brackets. I define
the operator (-) (see Eq. (17)) by averaging over all 2-planet angles. There exist a total
of six brackets of the form of Eq. (30) that give a contribution in e*?. These are

— W(P)
L{mlnzAz 12 _wu—re) M2, 6 @ —a=da)

2 | mo p(n, — n2) mo
(39)
L Wi L ®)_p(n -
gy et 3), —ng Ay W15 eP(A1—A2) ,
2 | mo q(ng —ng) mg
iy V1(§))> A Dag) M2 (g-1) 1)Aa—gA
_ —nQAQ > :L'er(p 1—(p+1) 2)’ 7n3A3V23q< £.267L((q7 )A2—qA3) :
2 mo pny — (p -+ 1) N9 myg )
(40)
Ll V?(éil) 1)Aa—gA (p) (pA DA
— 7”3/\3 d er ((q ) 2—(q 3) n2A2‘/1p>1: e p 1— (er ) 2) :
2 0 (q—1)ng —qng "mo
By ‘/1(275) A DAg) M2 (—g—1) DAa—g)
—ngN\s ; fge‘(p 1—(p—1) 2)7 7n3A3V23,2 1.26—1,(((]-{- )A2—qAs) 7
(41)

Z{mo pny — (p— 1) ng Mo

(—q—1)
my A Vs < e~ (@D Aa=ads) ﬁn2A2‘/1(2_£)3—:26L(p/\1_(p_1)>\2) _
mg (g +1)ng —qns mo ’

For the two brackets (39), the operator {-,-} reduces to 53~ 8?\2 0(32 aa; Whereas {-, -} =
L%a%z — La%% for the last four brackets. When indirect terms are disregarded, eHp is
expanded with (Petlt , Egs. (12) to (15))
0 _
Wij = 561/2(0%)
! 1 /2 Qij 0 I+1
7 Qij

1 /2 1 oy 0
V(-l) = _—_. =11 - gy b(l) iy
i7,> 2 Aj ( + 2 + 2 8aij> 1/2(QJ)7

and all six brackets are efficiently computed by hand using the expressions dcoy;/0A; =
2041']'/1\1', 8aij/8/\j = _2aij/Aj and a’n]/aA] = —STL]/AJ A factor m1m2n3A3/m8 can
be immediately factored out of the first two brackets. For the last four brackets, nearly
everything can be factored out and I am left with {zs, 2o} = — {Zs, 22} = ¢. In order to
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give the final result as a function of ny and ng only, I assume pn; — (p + ¢) na + gns = 0.
I obtain

ny

(1]

dbgp) db(q) 3 2
/2 P 1/2 P
(b1/2b1/2 + 0‘12b1/2 dovts + 60423[)5[;)2 dovss +5- ) b1/2bl/2 (43)

2q (
(»)

()
n2/2 ®) 1.(0) (9) db1/2 (1 ) (p) db1/2 Qi3 dbl/z db1/2
— ————q(2p+1)b; b b bP
(q—l)nz—qng (Q( r ) 12 1/2+qa12 1/2 dova * 2+p s 12 da 23 ) 2 daip dogg

2 db 1 db db(p) db(q)
= (q(2p 1)171/2571/2 gonzb\?) 1/2+<—p)oz bl/2 LI R Vi Sua VoR I

Ngo — N3

(q+1)n2—qn3 1/2 dOzlg 2 da 93 2 dOélg d0423
()

where b; /2 depends on a5 and bg’% depends on awng. «q3 is a shorthand notation for aoaras.
The first, second and third lines of Eq. (13) correspond to brackets (39), (10) and (11),
respectively. The second term of the first line comes from deriving the denominators with
respect to Ay in Eq. (39) and would have been absent if I had factored the denominators
out of the Poisson brackets.

n2/ns
1.5 5/3 1.875 15/7 2.5 3
10°
500
® Exact expression
1021 ~ Pair (1,3) and indirect
terms are disregarded
50
10
54
1_
0.5
0.21
15 1.6 1.7 1.8 1.9 2.0

ni/n;

Fig. 2 — Value of —Z on the loci of the exact resonance 2n; — 5no + 3n3 = 0. The green curve
is the exact value whereas the red curve is the approximation given by Eq. (43). The operator
(-) was defined by averaging over all 2-planet angles. = diverges to —oo when both ny/ny and
na/n3 go to 3/2 because of denominators (211 — 3ng)” " and (2ng — 3n3) ! in its expression.
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The function Check3pla of the package verifies that the expression of = given by
Eq. (43) is equal to twice the output of PerHam3pla when called with keplerian =
disregard13 = disregardInd = True and takeout__kn = False. Equation (13) comes
as a correction to Eq. (23) of Quillen, and Eq. (42) of Petit et al., , which
are incorrect. In particular, Quillen disregards brackets (10) and (11), whereas Petit
disregards brackets (11).

In Fig. 2, I plot the coefficient = appearing in Eq. (38) in the case (p,q) = (2,3),
on the loci of the exact Keplerian resonance 2n; — 5ny + 3ng = 0, for 3/2 < nl/n2 < 2
(3/2 < n2/n3 < 3). I compare the exact expression obtained without approximations
with Eq. (13).
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