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ABSTRACT

Co-orbital planets (in a 1 : 1 mean motion resonance) can be formed within a Laplace resonance chain. We develop a secular model to
study the dynamics of the resonance chain p : p : p + 1, where the co-orbital pair is in a first-order mean motion resonance with the
outermost third planet. Our model takes into account tidal dissipation through the use of a Hamiltonian version of the constant time-lag
model, which extends the Hamiltonian formalism of the point-mass case. We show the existence of several families of equilibria, and
how these equilibria extend to the complete system. In one family, which we call the main branch, a secular resonance between the
libration frequency of the co-orbitals and the precession frequency of the pericentres has unexpected dynamical consequences when
tidal dissipation is added. We report the existence of two distinct mechanisms that make co-orbital planets much more stable within
the p : p : p + 1 resonance chain rather than outside it. The first is due to negative real parts of the eigenvalues of the linearised system
with tides, in the region of the secular resonance mentioned above. The second comes from non-linear contributions of the vector field
and is due to eccentricity damping. These two stabilising mechanisms increase the chances of a future detection of exoplanets in the
co-orbital configuration.
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1. Introduction

Co-orbital systems have been extensively studied since the dis-
covery of equilibria in the three-body problem by Euler (1764)
and Lagrange (1772). In the hierarchical case, that is when
(m1 + m2) /m0 < 1/27, where m0 is the mass of the central
body and m1 and m2 are the co-orbital masses, Gascheau (1843)
showed that the equilateral equilibria, where the bodies are at
the vertices of an equilateral triangle, are linearly stable. This
result, combined with the discovery of several examples of co-
orbital bodies, such as the Jovian trojans or the horseshoe-shaped
orbits of Janus and Epimetheus around Saturn, contributed to
increasing the interest of scientists for systems of this kind.

In the planar and circular case, for masses in the range
3× 10−4 < (m1 + m2) /m0 < 1/27, the angle λ1 − λ2 between the
co-orbitals librates around its equilibrium of ±60◦ in trajecto-
ries commonly called tadpole orbits, where the co-orbital angle
is bounded by1 23.9◦ < λ1 − λ2 < 180◦. However, for masses
(m1 + m2) /m0 < 3 × 10−4 (e.g. Laughlin & Chambers 2002), a
separatrix in the phase space delimits a region of stable trajecto-
ries of another kind, generally called horseshoe orbits, where the
critical angle λ1 − λ2 librates around 180◦ with at least 312.2◦
of amplitude. For low eccentricities and small libration ampli-
tudes, still in the planar case, the existence of two proper modes
called Lagrange and anti-Lagrange have been shown, numeri-
cally by Giuppone et al. (2010) and analytically by Robutel &
Pousse (2013). In the Lagrange configuration, the pericentres of
the orbits do not precess and verify the relation $1 −$2 = 60◦,

1 The exact value of the lower bound is 2 arcsin
[(√

2 − 1
)
/2

]
≈ 23.9◦

(e.g. Robutel & Pousse 2013).

whereas in the anti-Lagrange configuration, both orbits precess
at the same frequency while maintaining the relation $1 −$2 =
240◦. For low eccentricities but very large libration amplitudes,
in the region of horseshoe-shaped orbits, Couturier et al. (2021)
showed that the Lagrange and anti-Lagrange configurations cor-
respond to$1−$2 = 0◦ and$1−$2 = 180◦, respectively. High
eccentricities give rise to topological changes in the phase space
(see Leleu et al. 2018), and thus to many more exotic trajectories,
while the dynamics of the inclined problem is even more com-
plex by allowing, among other things, transitions between these
orbits and the retrograde co-orbitals (Namouni 1999).

The discovery of exoplanets raised the question of the exis-
tence of co-orbital planets, which are absent from the Solar
System. Accretion in situ at the equilateral equilibria of a pri-
mary or capture in the 1:1 resonance of planets formed in other
parts of the system are two possible scenarii of formation of such
systems (e.g. Laughlin & Chambers 2002; Cresswell & Nelson
2009). The stability of co-orbital planets formed in a disc has
been studied by Leleu et al. (2019), who show that under dis-
sipative interactions with the gas disc, the equilateral equilibria
can be either attractive or repulsive, depending on the co-orbital
mass ratio and the parameters of the disc. Moreover, Leleu et al.
(2019) show that, at least around low-mass stars, co-orbital exo-
planets generally end up in a tadpole configuration and often
within a Laplace resonance chain.

For co-orbital exoplanets orbiting close to the host star, tidal
dissipation induced by the differential gravitational interaction
leads to a long-term evolution of the orbits. Couturier et al.
(2021) shows that, for a pair of co-orbital exoplanets orbiting
a star, the equilateral Lagrangian equilibria are always repulsive
under tidal interactions, and that regardless of the parameters of
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the system, the destruction of the co-orbital motion is unavoid-
able. However, the discovery of co-orbital exoplanets is still
possible because the destruction time is strongly dependent on
the parameters of the system and can easily be greater than the
lifetime of the host star. Couturier et al. (2021) neglected any
interaction with possible other planets in the system. In this
paper we extend this work to the case where the pair of co-
orbital exoplanets interacts with an outermost third planet, in
a first-order mean motion resonance with the co-orbitals. More
precisely, we study the Laplace resonance chain p : p : p + 1,
where p is a small integer.

In Sect. 2, we study the point-mass p : p : p + 1 resonance
chain in the absence of tides. We show how rich and complex
the dynamics of this chain is, and we conclude the section with
the presentation of the stability map of the chain. In Sect. 3,
we include tidal dissipation in the model by an extension of
the Hamiltonian formalism. We study the linearised system in
the vicinity of the equilibria, and by computing the real parts
of the eigenvalues, we show the existence of a linearly stable
zone around the 1 : 1 secular resonance between the libration
frequency of the co-orbital and the precession frequency of the
pericentres. In Sect. 4, we compare the analytical results with
numerical simulations. They confirm the results of Sects. 2 and
3 and highlight the existence of a stabilisation mechanism of the
co-orbitals due to eccentricity damping. We discuss our results
in Sect. 5. In Table A.1, we list the notations used throughout this
paper. Appendix F completes Sect. 4 with more numerical sim-
ulations and a complete discussion on the influence of the mass
of the third planet on the co-orbital dynamics.

2. The p : p : p + 1 resonance chain

2.1. The Hamiltonian of the problem

In this section, we study an occurrence of the point-mass pla-
nar four-body problem. We construct the Hamiltonian associated
with the resonance chain p : p : p + 1, where a central body,
a star of mass m0, is orbited by two co-orbital planets of mass
m1 and m2 and a third planet of mass m3 further away from the
star and in a first-order mean motion resonance with the pair of
co-orbital planets. Although we write all equations for a gen-
eral value of the integer p, the figures are restricted to the case
p = 1 where the nominal period of the third planet is twice
that of the co-orbitals. For all planets we define the quantities
β j = m0m j/

(
m0 + m j

)
and µ j = G

(
m0 + m j

)
, where G is the

gravitational constant.

2.1.1. The averaged Hamiltonian

In order to define a canonical coordinate system related to the
semi-major axis a j, the eccentricity e j, the mean longitude λ j,
and the longitude of the pericentre $ j of planet j, we first
consider Poincaré heliocentric coordinates (Λ̃ j, λ j, D̃ j,−$ j),
where

Λ̃ j = β j
√
µ ja j and D̃ j = Λ̃ j

(
1 −

√
1 − e2

j

)
. (1)

In these coordinates, the Hamiltonian derives from the symplec-
tic form

Ω =
∑

j∈{1,2,3}

(
dλ j ∧ dΛ̃ j − d$ j ∧ dD̃ j

)
. (2)

Following Laskar & Robutel (1995), the planetary Hamiltonian
is written

H = HK(Λ̃ j) + HP(Λ̃ j, λ j, D̃ j, $ j), (3)

where the Keplerian part, due to star-planet interactions, reads

HK = −
∑

j∈{1,2,3}

β3
jµ

2
j

2Λ̃2
j

, (4)

and the perturbation HP, whose size relative to HK is of order
(m1 + m2 + m3) /m0, is expanded in power series of the eccen-
tricities. We assume that the system is close to the resonance
p : p : p + 1. This means that the nominal mean motions verify

n1,0 = n2,0 = η =
p + 1

p
n3,0, (5)

while the nominal semi-major axes a j,0 are related to n j,0 by the
Kepler law n2

j,0a3
j,0 = µ0 = Gm0. The a j are always close to their

nominal value2 a j,0, and the Λ̃ j stay close to the quantities Λ?
j

defined as

Λ?
j = m j

√
µ0a j,0. (6)

To study the dynamics in the vicinity of the resonance, we
expand the Hamiltonian in the neighbourhood of

(
Λ?

1 ,Λ
?
2 ,Λ

?
3

)
.

An expansion at order 2 in the Keplerian part and at order 0 in
the perturbative part generates remainders of the same size, and
we limit ourselves to

HP(Λ̃ j, λ j, D̃ j, $ j) = HP(Λ?
j , λ j, D̃ j, $ j). (7)

A suitable linear change of variables to deal with the p : p : p+1
resonance chain is (e.g. Delisle 2017)

ξ
ξ2
ξ3
σ1
σ2
σ3


=



1 −1 0 0 0 0
0 p −p 0 0 0
0 −p p + 1 0 0 0
0 −p p + 1 1 0 0
0 −p p + 1 0 1 0
0 −p p + 1 0 0 1





λ1
λ2
λ3
−$1
−$2
−$3


, (8)

which is canonical if we transform the actions according to(
Λ̃1, Λ̃2, Λ̃3, D̃ j

)
7→

(
L′,Γ′,G′,D′j

)
=

Λ̃1,
p + 1

p

(
Λ̃1 + Λ̃2

)
+ Λ̃3,

∑
j≤3

(
Λ̃ j − D̃ j

)
, D̃ j

. (9)

Since the total angular momentum G′ is a first integral, the
Hamiltonian does not depend on the angle ξ3. Moreover, in the
p : p : p + 1 resonance, the angle ξ2 is fast circulating and we
average over it. The averaged Hamiltonian reads

H′
(
L′,Γ′,G′, ξ,D′j, σ j

)
= H′K

(
L′,Γ′,G′,D′j

)
+

1
2π

∫ 2π

0
H′P

(
ξ, ξ2,D′j, σ j

)
dξ2.

(10)

2 The nominal semi-major axes are defined with µ0 instead of µ j, which
conveniently yields a1,0 = a2,0 := ā. This approximation is valid since
the subsequent error is of order O

(
m j/m0

)
, while the width of the

resonance is of order O
√

m j/m0.
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This change of variable, along with the averaging process, allows
the two degrees of freedom associated with (ξ2, ξ3,Γ

′,G′) to be
lost, and we are left with four degrees of freedom. After the aver-
aging process, the scaling factor Γ′ and the angular momentum
G′ are both parameters and a rescaling by Γ′ reduces the depen-
dency to only one parameter. As we study the effect of tidal
dissipation on the dynamics in Sect. 3, it is actually more conve-
nient to normalise by the constant Γ? = (p + 1)

(
Λ?

1 + Λ?
2

)
/p +

Λ?
3 rather than by Γ′, which is not constant when dissipation is

present. In other words, we perform the canonical transformation

H =
H′

Γ?
, L =

L′

Γ?
, G =

G′

Γ?
, Γ =

Γ′

Γ?
, D j =

D′j
Γ?
, Λ j =

Λ̃ j

Γ?
,

(11)

while the angles are unchanged.

2.1.2. Expansion of the Keplerian part

As mentioned above, the Keplerian part of the Hamiltonian is
expanded at second order in the vicinity of the Λ?

j . If we denote
∆Λ̃ j = Λ̃ j − Λ?

j , the expansion reads

HK =

3∑
j=1

n j,0∆Λ̃ j −
3
2

3∑
j=1

n j,0

Λ?
j

∆Λ̃2
j . (12)

Substituting Λ̃ j − Λ?
j for ∆Λ̃ j, we obtain

HK = 4
3∑

j=1

n j,0Λ̃ j −
3
2

3∑
j=1

n j,0

Λ?
j

Λ̃2
j −

5
2

3∑
j=1

n j,0Λ?
j . (13)

The third term is constant and can be removed without changing
the dynamics. Performing the normalisation (Eq. (11)) and the
change of variable (Eq. (9)), we have

HK = −
3
2
η

{
C1L2 + C2 (p (Γ − Υ) − L)2

+ C3 p (p + 1)
(
Υ −

pΓ

p + 1

)2
 +

4ηpΓ

p + 1
,

(14)

where we denoted Υ = G + D1 + D2 + D3 =
∑

j Λ j and C j =

Γ?/Λ?
j , that is

C1 =

(
p + 1

p

)1/3 m3

m1
+

p + 1
p

(
1 +

m2

m1

)
,

C2 =
m1

m2
C1, C3 = 1 +

(
p + 1

p

)2/3 m1 + m2

m3
.

(15)

Without dissipation, Γ is constant and almost equal to 1 and we
simply evaluate HK at Γ = 1, hence achieving the reduction to
only one parameter3. In this case, the last term is constant and
can also be removed.

Instead of the variables L, G, and Γ, we can use the variables
∆L, ∆G, and ∆Γ defined by their difference to the Keplerian

3 The relevant parameter to consider is Γ/G and the variations of Γ are
reported in G (Eqs. (37) and (38)).

resonance (Eq. (6)). In this case, the approximation Γ = 1
becomes ∆Γ = 0 and Eq. (12) yields, once normalised,

HK = −
3
2
η
{(

p2C2 + p(p + 1)C3

)
∆Υ2

+ 2pC2∆Υ∆L + (C1 + C2) ∆L2
}
,

(16)

where ∆Υ = ∆G + D1 + D2 + D3 =
∑

j ∆Λ j. We find the Hamil-
tonian (16) to be well adapted to the analytical work derived in
Sect. 2.2.2, while we use the Hamiltonian (14) in the remain-
ing sections. Moreover, we do not perform the evaluation Γ = 1
in Sect. 3, where tidal dissipation is present and Γ is a variable
quantity. Both Hamiltonians yield the same dynamics and it is
only a matter of preference.

2.1.3. Expansion of the perturbative part

The perturbative part HP of the Hamiltonian is expanded in
power series of the eccentricities. To this end, we separate the
contributions due to the interactions between each pair of planets
as

HP = H1,2 +H1,3 +H2,3. (17)

We denote X j =

√
2D̃ j/Λ̃ j ei$ j = e jei$ + O

(
e3

j

)
For a pair

(p1, p2) ∈ {(1, 2) , (1, 3) , (2, 3)} of planets, the perturbation to
the Hamiltonian due to their mutual interaction reads (Laskar
& Robutel 1995)

Hp1,p2 =
∑
k∈Z2

∑
q∈N4

Ψ
q
kXq1

p1 Xq2
p2 X̄q3

p1 X̄q4
p2

 ei(k1λp1 +k2λp2 ). (18)

For a non-zero Ψ
q
k, the conservation of the angular momentum

imposes on the tuples q = (q1, q2, q3, q4) ∈ N4 and k = (k1, k2) ∈
Z2 to verify the d’Alembert rule:

k1 + k2 + q1 + q2 − q3 − q4 = 0. (19)

This rule, combined with the averaging process, implies that
H1,2 has no odd term in eccentricity, while H1,3 and H2,3 have
no term of order 0. Since we limit ourselves to the second order
in eccentricity, we write

H1,2 = H (0) +H
(2)
1,2 , H j,3 = H

(1)
j,3 +H

(2)
j,3 , (20)

where the superscript refers to the order in eccentricity, while
the subscript refers to the considered pair of planets. The Hamil-
tonian H (0) has no subscript since only the pair of co-orbitals
yields terms of order 0 and no confusion is possible.

Following Laskar & Robutel (1995), H1,3 and H2,3 can be
written

H
(1)
j,3 =

m jn3,0

m0C3

{
C(1)

p,1

√
2C jD j cos

(
pδ j,1ξ − σ j

)
+C(1)

p,2

√
2C3D3 cos

(
pδ j,1ξ − σ3

)} (21)

and

H
(2)
j,3 =

2m j

m0

n3,0

C3

{
C(2)

p,1C jD j cos
(
2pδ j,1ξ − 2σ j

)
+ C(2)

p,2C3D3 cos
(
2pδ j,1ξ − 2σ3

)
+ C(2)

p,3

√
C jC3D jD3 cos

(
2pδ j,1ξ − σ j − σ3

)
+ C(2)

p,4

(
C jD j + C3D3

)
+C(2)

p,5

√
C jD jC3D3 cos

(
σ j − σ3

)}
,

(22)
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where δ j,1 = 1 if j = 1 and zero otherwise. The quantities C(n)
p,m

depend only on p and can be obtained using the Laplace coef-
ficients. For p = 1, their analytical expressions, as well as a
numerical evaluation, is given in Appendix B.

The perturbation H1,2 cannot be obtained using the same
procedure since the Laplace coefficients diverge for equal nom-
inal semi-major axes and a1,0 = a2,0 = ā. We instead follow
the method described in Robutel & Pousse (2013). We denote
∆ =

√
2 − 2 cos ξ and find

H0 =
m1

m0

η

C2

(
cos ξ − ∆−1

)
,

H
(2)
1,2 =

m1

m0

η

C2
{Ah (C1D1 + C2D2) (23)

+ 2
√

C1C2D1D2 Re

(
Bhei(σ2−σ1)

)}
,

where

Ah =
5 cos 2ξ − 13 + 8 cos ξ

4∆5 − cos ξ and

Bh = e−2iξ −
e−3iξ + 16e−2iξ − 26e−iξ + 9eiξ

8∆5 .

(24)

The final simplified Hamiltonian is then

H = HK +H (0) +H
(1)
1,3 +H

(1)
2,3 +H

(2)
1,2 +H

(2)
1,3 +H

(2)
2,3 . (25)

We denote F0 : R8 7→ R8 the differential system derived from
Eq. (25) by the Hamilton-Jacobi equations.

2.2. Equilibria and linearisation in their vicinity

In this section, we study the equilibria of the resonance p : p :
p + 1 and the dynamics in their vicinity.

2.2.1. Fixed points and libration centres

One of the consequences of averaging over the mean motion
is that the averaged Hamiltonian (25) has equilibria, that is,
points in the phase space where its gradient vanishes. The com-
plete Hamiltonian (3) has no equilibria, however, and since the
Hamiltonian (25) is supposed to model it, we are interested in
the dynamics of the complete Hamiltonian at the equilibria of
the model.

At a fixed point (or equilibrium) of the model, L and D j are
constant and so are e j and a j. Similarly, the angles σ j and ξ are
constant; that is, there are constants c j such that

σ j = −pλ2 + (p + 1) λ3 −$ j = c j. (26)

However, the secular angle −pλ2 + (p + 1) λ3 and the pericentres
$ j are not constant at the equilibria, but they all precess with the
same frequency, which we denote ν3.

The average performed in Eq. (10) is actually analogous to
a first-order Lie serie expansion, and the averaging process can
be seen as a periodic change of variable. Denoting x and x′ the
variables of the Hamiltonian respectively before and after the
average, we have x = eLW x′, where LW = {W, ·} denotes the total
time derivative along the trajectories of the scalar field W, which
is constrained by the cohomological equation (Deprit 1969)

{HK ,W} = HP −
1

2π

∫ 2π

0
HP dξ2. (27)

This equation shows that, at the equilibria, W is periodic of time,
and so is the change of variable. This means that fixed points
in the averaged model correspond to periodic trajectories in the
complete system. For a quantity not invariant by rotation around
the axis of the total angular momentum, however, like the secular
angle −pλ2 + (p + 1) λ3 or the pericentres $ j, a fixed point in
the model corresponds in the complete Hamiltonian to a quasi-
periodic motion with the two frequencies ν2 and ν3, with

ν2 = ξ̇2 =
∂H

∂Γ
and ν3 = ξ̇3 =

∂H

∂G
=
∂H

∂Υ
, (28)

where these quantities are evaluated at the equilibrium. More
precisely, it is a periodic motion with frequency ν2 in a rotating
frame following all the pericentres at frequency ν3. This result
holds true for any resonance chain (e.g. Eq. (A.1) in Delisle
2017). In the rest of this work, what is known as a fixed point
or equilibrium for the model is referred to as a libration centre in
the complete system.

2.2.2. Analytical results at first order in eccentricity

Even if truncated at order 1 in eccentricity, the fixed points
of the Hamiltonian (25) cannot be given analytically. Similar
difficulties were met by Delisle (2017) for resonance chains
with first-order resonances between non-consecutive planets.
However, we show here that a further simplification allows us
to obtain analytical expressions of the equilibria and of the
eigenvalues of the linearised system.

To further simplify the Hamiltonian, we force a decoupling
between the degree of freedom (ξ,∆L) associated with the libra-
tion of the co-orbitals and the three other degrees of freedom(
σ j,D j

)
. To this end, we first evaluate H (1) = H

(1)
1,3 + H

(1)
2,3 at

ξ = π/3. Indeed, the HamiltonianHK +H (0) +H (1) is only a per-
turbation of HK +H (0) that only has equilibria at ξ ∈ {±π/3, π},
where ξ = π is the hyperbolic (unstable) aligned configura-
tion and ξ = ±π/3 are the equilateral elliptic (stable) equilibria
(Robutel & Pousse 2013). Both elliptic equilibria are symmet-
ric with the same dynamics, hence we only consider ξ = π/3.
Then, we replace the variable ∆L by the constant ∆L? in the
anti-diagonal term4 ofHK in (16), where

∆L? = −
pC2

C1 + C2

(
∆G + D1,0 + D2,0 + D3,0

)
= −

pC2

C1 + C2
∆Υ?

(29)

is the value of ∆L for which ∂HK/∂∆L vanishes. The D j,0 are
given by Eq. (32). While the evaluation at ξ = π/3 allows analyti-
cal expressions for the position of the fixed points, the evaluation
at ∆L = ∆L? also uncouples (ξ,∆L) from

(
σ j,D j

)
and enables

analytical expressions of the eigenvalues of the linearised sys-
tem in the vicinity of the fixed points. The differential system
derived fromHK +H (0) +H (1), once these simplifications have
been performed, is given in Appendix C. It vanishes when the
angles are equal to

ξ0 =
π

3
, σ1,0 = p

π

3
+ επ, σ2,0 = επ,

σ3,0 = arctan
m1 sin pξ0

m2 + m1 cos pξ0
+ (1 − ε) π,

(30)

4 That is, the term proportional to ∆L∆Υ.
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Fig. 1. Values of the eccentricities and fundamental frequencies given by the analytical results. Left: value of e1 at the fixed points of the resonance
chain 1 : 1 : 2 as predicted by Eq. (35). Right: values of ν/η and ν3/η along the main branch as a function of δ, for the same resonance chain,
predicted by Eqs. (42) and (33). In both panels the planetary masses are (m1 + m2) /2 = m3 = 10−4 m0 and m2/m1 = 10. According to Eq. (32),
e1 = e2, and for this choice of masses and resonance chain e3/e1 = 0.5471. In Table 1, which gathers the fixed points at second order in eccentricity,
the three branches visible in the left plot are branches 1 (main branch), 2, and 6. The secular resonances between ν and ν3 are shown on the right,
and are also easy to spot in Fig. 6.

where

ε =

{
0 if ν3 < 0,
1 if ν3 > 0,

(31)

and when the actions are equal to5

C1C(1)
p,1

2
m2

1 p2

2C2
3m2

0 (p + 1)2 =

(
ν3

η

)2

D1,0, C1D1,0 = C2D2,0,

D3,0

D1,0
=

C3C(1)
p,2

2
H2

C1C(1)
p,1

2 , ∆L0 = 0,

(32)

where the precession frequency of the pericentres is

ν3 = −ηK∆Υ?, K =
3p2C1C2

C1 + C2
+ 3p (p + 1) C3, (33)

and we define the constant H by

H = cos
(
pξ0 − σ3,0

)
+

m2

m1
cosσ3,0. (34)

The unknowns of Eq. (32) are the D j,0, and since the ratios
D2,0/D1,0 and D3,0/D1,0 are known, we are reduced to the
unique unknown D1,0. The precession frequency of the peri-
centre, ν3, depends on D1,0 (see Eqs. (29) and (33)). Denoting
C = 1 + D2,0/D1,0 + D3,0/D1,0 and performing the translation
Z = D1,0 + 2∆G/3C, Eq. (32) is rewritten as a third-degree
polynomial in Z:

Z3 − PZ − Q = 0, where

P =
∆G2

3C2 and Q =
2∆G3

27C3 +
C1C(1)

p,1
2
m2

1 p2

2C2C2
3K2m2

0 (p + 1)2 .
(35)

5 C1D1,0 = C2D2,0 yields e1,0 = e2,0 since e j =
√

2C jD j.

The coefficients P and Q of this polynomial depend on the
parameter ∆G. There is a bifurcation between 1 and 3 real
solutions when 27Q2 − 4P3 = 0, that is at

∆G = ∆Gbif = −

 27C1C(1)
p,1

2
p2Cm2

1

8C2
3K2m2

0 (p + 1)2


1/3

. (36)

In the rest of this work, we use the parameter

δ = ∆G/∆Gbif, (37)

where

∆G =
G′

Γ′
−

G?

Γ?
=

G
Γ
−

∑
Λ?

j

Γ?
=

G
Γ
−

∑
j≤3

C−1
j . (38)

In this section, Γ = Γ′/Γ? ≈ 1 is simply evaluated at 1 and
ignored, but not in Sects. 3 and 4, where tidal dissipation induces
a drift in Γ, hence in δ. The normalisation by ∆Gbif ensures that
the bifurcation is at δ = 1, regardless of the planetary masses.

The forced decoupling that we performed to obtain these
expressions leads to results that are very similar to the sec-
ond fundamental model of resonance proposed by Henrard &
Lemaitre (1983). The fixed points are given by the roots of the
third-degree polynomial in Z (Eq. (35)), which has one or three
real solutions depending on δ, hence a bifurcation. The solutions
of Eq. (35) are plotted in Fig. 1. For δ < 1, only one ellip-
tic equilibrium exists, called the main branch, while for δ ≥ 1
two other fixed points appear, one of them being hyperbolic,
hence the presence of separatrices in the phase space and the for-
mal existence of a resonance. These results come from a strong
hypothesis, and we see in Sect. 2.2.3 that the topology of the
Hamiltonian (25) is different (see Table 1). However, we show
in Fig. 2 that these analytical expressions are accurate for low
eccentricities.
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Table 1. The 15 equilibria of the simplified Hamiltonian (25).

# 100 e1 100 e2 100 e3 σ1 (◦) σ2 (◦) σ3 (◦) L−0.0345 ξ (◦) Nature Domain

1 4.449 7.490 5.878 ±14.433 ±22.572 ∓92.014 6.461e−5 ±59.760 elliptic δ ∈ R
2 0.168 0.165 0.093 ∓119.18 ±179.92 ±4.6606 19.34e−5 ±60.003 δ-dependent δ > 1.129
3 5.201 7.645 5.470 ±14.216 ∓15.688 ±95.525 6.483e−5 ±59.806 elliptic δ > 5.997
4 8.344 8.646 0.305 180 0 0 6.501e−5 180 hyperbolic δ ∈ R
5 7.939 7.180 5.922 ∓151.76 ∓20.944 ±92.729 6.439e−5 ±179.13 hyperbolic δ > 4.195
6 10.11 6.330 6.246 ∓102.00 ±177.92 ±4.3287 7.200e−5 ±62.538 hyperbolic δ > 1.129
7 6.009 8.721 1.696 ±6.8311 ∓1.8178 ±86.449 6.518e−5 ±59.710 hyperbolic δ > 5.999
8 0.164 0.165 0.079 0 180 0 19.34e−5 180 hyperbolic δ > 1.082
9 3.708 6.584 6.887 0 180 0 7.157e−5 180 hyperbolic δ > 1.082

Notes. The equilibria are found for the resonance chain 1 : 1 : 2 at δ = 7 using a Newton-Raphson method. Values given without decimal places
are exact. The planetary masses are as in Fig. 1. Branch 2 is hyperbolic only for 5.548 ≤ δ ≤ 5.802 and elliptic elsewhere. The entry value of δ
in the formal resonance (here 1.129) weakly depends on the planetary masses because of the normalisation by ∆Gbif. Branch 1 is the only elliptic
branch existing for all values of δ and it is the main branch introduced in Sect. 2.2.2. It corresponds to the only real solution of Eq. (35) when
δ < 1. Branches 3, 5, and 7 do not exist at first order in eccentricity, while they exist at second order; hence, we cannot exclude that the complete
Hamiltonian (3) has more libration centres, either because we did not discretise the phase space thinly enough to find them or because they do not
exist at second order in eccentricity.

In the vicinity of the main branch, we linearise the differen-
tial system. We use the cartesian coordinates

u j =

√
2D j cosσ j and v j =

√
2D j sinσ j, (39)

and denoting X = t (u1, u2, u3, v1, v2, v3,∆L, ξ), the linearised
system is

d∆X
dt

=

(
Q6 06,2
02,6 Q2

)
∆X, where ∆X = X − X0,

Q2 =

(
0 9m1

4m0
ηC−1

2
−3η (C1 + C2) 0

)
,

(40)

and X0 is the equilibrium value of X. The matrix Q6 is given in
Appendix D. Its characteristic polynomial reads

det (λI6 − Q6) =
(
λ2 + ν2

3

)2 (
λ2 + ν2

3 − 2ν3I
∑

D j,0

)
, (41)

where I is defined in Eq. (D.1). It is interesting to note that the
precession frequency of the pericentres, ±iν3, is an eigenvalue of
the differential system (Eq. (40)). This factorisation was already
noted by Pucacco (2021), who studied the resonance chain 1 :
2 : 4 of the Galilean satellites, although it was not attributed to
the precession of the pericentres. The eigenvalues of Q2 are ±iν,
where

ν = η

√
27
4

m1 + m2

m0
(42)

is the libration frequency of the angle ξ in the neighbourhood
of the equilateral Lagrangian configuration (Robutel & Pousse
2013; Couturier et al. 2021). Figures 1 show that ν3 < 0 for
the main branch, which ensures that the roots of Eq. (41) are
purely imaginary. Evaluating the eigenvalues ±iν and ±iν3 in the
vicinity of the main branch shows that, at δ ≈ −5.6 for the plan-
etary masses in Fig. 1, all these eigenvalues have roughly the
same value, yielding a 1 :1 secular resonance between the libra-
tion frequency of the co-orbitals and the precession frequency
of the pericentres. Other secular resonances between ν and ν3
are shown in Fig. 1, and are also very visible on the stability
map from Fig. 6. We show in Sect. 3.2 that the secular resonance
1 : 1 has important consequences for the tidal stability of the
co-orbital pair.

2.2.3. Topology of the phase space

Limiting the work at first order in eccentricity and forcing a
decoupling between (L, ξ) and

(
D j, σ j

)
gives analytical expres-

sions of the linearised system6, but at the cost of strong approx-
imations. We develop here a Newton–Raphson-based algorithm
to numerically find the equilibria of the model (25) without these
approximations.

The vector field F0 derived from the Hamiltonian (25)
depends on the choice of the parameter δ (through ∆G), and
once a fixed point is found for a particular value of δ, we repeat
the Newton-Raphson algorithm for slowly varying values of δ
in order to travel along the whole branch. We look for equi-
libria exploring the parallelepiped in the phase space defined
by

∣∣∣u j

∣∣∣ < 0.08 and
∣∣∣v j

∣∣∣ < 0.08
(
e2

j = C j(u2
j + v2

j )
)
. We choose

L0 = L? = Λ?
1 /Γ

? as initial condition of the Newton-Raphson
method for L since all equilibria are expected to be close to this
value, and so no discretisation is necessary along this axis. In the
same way, we only choose ξ0 ∈ {±π/3, π}.

We display in Table 1 all the equilibria that we have found
for δ = 7, their hyperbolic or elliptic nature, and the value of
δ that gives birth to the branch. Due to the difficulty of explor-
ing a thinly discretised grid in six dimensions, we may not have
found all the possible equilibria. We discretised the axes u j and
v j with only eight points, testing 3 × 86 initial conditions, all of
which converged towards 15 equilibria. Since the Hamiltonian
(25) is invariant by the transformation (ξ, σ j) 7−→ (−ξ,−σ j),
fixed points with values of the angles different from 0 or π have
a symmetric, hence the ± and ∓ signs in Table 1 (the upper sign
corresponds to a fixed point and the lower sign to its symmetric).
This symmetry corresponds to the invariance of the system by
a rotation of angle π around an axis normal to the total angular
momentum.

As can be seen in Table 1, only the branches 1, 2, and 3 of
fixed points can be elliptic, and thus we focus only on them in
the rest of this work. In Fig. 2 we plot these branches for values
of δ ranging from −2 to 9. For branches 1 and 2, which are pre-
dicted by the first order in eccentricity, for comparison we also

6 Only for the equilibria and the eigenvalues; we did not obtain the
eigendirections.
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Fig. 2. Position of the elliptic branches 1, 2, and 3 (see Table 1) of equilibria of Hamiltonian (25) in the resonance 1 : 1 : 2, for −2 ≤ δ ≤ 9. For
each branch three curves appear, corresponding to e jeiσ j for j = 1, 2, 3. The planetary masses are the same as in Table 1. A zoomed-in image close
to the origin is shown in the inset. In this area, the analytical position of these equilibria, given by Eqs. (30) and (35), is plotted by a thin grey line.
The agreement is good at low values of eccentricity, but quickly worsens further from the origin. In particular, the thin grey lines are straight since
σ j does not depend on δ in Eq. (30). Branch 1 exists for all values of δ and has all colours from yellow to dark purple, while branch 3 only exists at
δ > 5.997 and thus only has purple.

plot them as given by Eqs. (30) and (35). This section shows how
the analytical model is unable to locate the equilibria of the sim-
plified Hamiltonian (25) for e j & 0.005 (see Fig. 2) and does not
even give its topology for e j & 0.05 (branches 3, 5, and 7 do not
exist at first order in eccentricity; see Table 1). This discrepancy
between first and second order in eccentricity was already men-
tioned by Beaugé et al. (2006) in the case of the two-planet 1 : 2
mean motion resonance.

2.2.4. Comparison with the complete Hamiltonian

In this section we compare the positions of the equilibria of the
secular (simplified) Hamiltonian (25) to those of the correspond-
ing periodic orbits of the complete (full) Hamiltonian (3), which
we call libration centres in Sect. 2.2.1. To this end, we develop
an iterative algorithm, similar to that in Couetdic et al. (2010),
to find a libration centre of the complete Hamiltonian using an
equilibrium of the simplified Hamiltonian as initial condition.

We assume, close enough to a libration centre of the com-
plete Hamiltonian (3), that the trajectories are quasi-periodic,
and we write, for any complex quantity z depending on these
trajectories,

z (t) =
∑
k∈Z6

zkeik·ωt, (43)

where the coordinates of ω = t (ν, ν2, ν3, g1, g2, g3) are the fun-
damental frequencies of the complete Hamiltonian (3). The
frequencies ν, ν2, and ν3 have approximate values given by
Eqs. (42), (28), and (33), respectively.

As explained in Sect. 2.2.1, the libration centres correspond
to points in the phase space where the motion is periodic7 with
frequency ν2. The description of the algorithm is as follows:

– For a choice of the parameter δ, find the position of an
elliptic equilibrium of the simplified Hamiltonian (25) with
a Newton–Raphson method. Use it as the initial condition
to integrate numerically the trajectories of the complete
Hamiltonian (3);

– For a complex quantity z depending on the trajectories
of Eq. (3), obtain the decomposition (Eq. (43)) using a
frequency analysis method (e.g. Laskar 1993);

– Identify the terms depending on frequencies other than ν2
and set to 0 the corresponding coefficient zk.

– Proceed similarly for different quantities z and evaluate them
at time t = 0 in order to obtain a new initial condition.
Restart from the first step using the new initial condition
instead of the equilibrium of Eq. (25).

The process is iterated until a convergence occurs. In Fig. 3,
we display the trajectories of the quantities e jeiσ j in the plane(
e j cosσ j, e j sinσ j

)
as the algorithm iterates. Isolating terms

featuring frequencies other than ν2 is difficult, if not impossible,
since the frequency analysis gives the scalars k · ω but not the
vector k, which cannot be deduced as the vector ω is unknown
for the complete Hamiltonian. We can get around this difficulty
because ν2 is much larger than the other frequencies, hence it

7 Quasi-periodic with frequencies ν2 and ν3 for a quantity not invariant
by rotation around the vertical axis.
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Fig. 3. Trajectories of e jeiσ j in the complete Hamiltonian (3) for the six iterations needed for the algorithm to converge to the libration centre.
Iteration 0 is the equilibrium (main branch) of the simplified Hamiltonian (25) at δ = 5. It is rather far from the libration centre of the complete
Hamiltonian (see also Fig. 4). After six iterations, the algorithm converges to the libration centre and the motion is periodic (hence the closed
curves) with frequency ν2 (see Sect. 2.2.1). The planetary masses are the same as in Table 1 and the resonance chain is 1 : 1 : 2.

is easy to isolate terms that depend on ν2 from those that do
not. The implementation is thus simplified by setting to 0 the
coefficients zk of the terms that do not depend on ν2.

This algorithm is only able to find libration centres associ-
ated with elliptic fixed points. We use it to find the branches of
libration centres associated with branches 1, 2, and 3 of Table 1.
We confirm the existence of a small hyperbolic zone for branch 2
in the complete Hamiltonian when the algorithm stops converg-
ing as it travels along the branch (by slowly incrementing the
value of δ). We plot in Fig. 4 the main branch (branch 1) of
the libration centres of the complete Hamiltonian (3) and we
compare it with the main branch of equilibria of the simplified
Hamiltonian (25). In Fig. 5, we plot the precession frequency of
the pericentres, ν3, for the main branch of the libration centres,
and we compare it with the analytical expression (33). This figure
shows that, for high values of δ, n1/n3 tends towards (p + 1) /p
(which is equal to 2 in this case). For small values of δ though,
this ratio diverges from its nominal value and libration centres
at small values of δ are far from the Keplerian resonance. For
branch 1, we now refer to very negative values of δ as far from
the resonance and to very positive values of δ as deep in the res-
onance. The value of ν3 in the complete Hamiltonian is obtained
from the frequency analysis of eiξ3 , once the libration centre is
known.

2.3. Stability map of the p : p : p + 1 resonance chain

Before taking into account tidal dissipation in the model, we
study the stability of the point-mass p : p : p + 1 resonance

chain by constructing a dynamical map using the frequency anal-
ysis method to determine the chaoticity of a given orbit (Laskar
1990). More precisely, we study the stability of the chain along
its main branch (see Fig. 1) between δ = 7, deep in the resonance,
and δ = −7, outside the resonance.

For each value of δ, we compute the position of the
exact libration centre by means of the algorithm described in
Sect. 2.2.4, and we choose an initial value for the angle ξ between
its equilibrium value (near 60◦) and the value at the boundary
between tadpole and horseshoe-shaped orbits (close to 24◦, see
Robutel & Pousse 2013). For values of ξ0 close to 60◦, the con-
sidered orbit is close to the main branch and it moves away for
decreasing values of ξ0. For all other variables, we choose as the
initial condition the value at the libration centre. Every trajectory
(i.e. every choice of δ and ξ0) is integrated over 80 000 periods
of the co-orbital planets, and for each half of the simulation the
exact value of the libration frequency ν is extracted from the fre-
quency analysis of eiξ. We obtain two values of ν, namely ν(1) for
the first half of 40 000 periods and ν(2) for the second half. The
diffusion index, defined as (Robutel & Gabern 2006)

ζν = log10

∣∣∣∣∣∣ν(1) − ν(2)

ν(1)

∣∣∣∣∣∣, (44)

measures the degree of quasi-periodicity of the orbit. Orbits with
ζν < −6 are considered close to quasi-periodic (stable), while
orbits with ζν > −2 are very chaotic (unstable). We plot the sta-
bility map for the resonance chain 1 : 1 : 2 in Fig. 6. Secular
resonances between ν and ν3, already predicted by the analytical
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Fig. 4. Position of branch 1 of elliptic libration centres of the complete Hamiltonian (3) in the resonance 1 : 1 : 2 for −7 ≤ δ ≤ 7. The planetary
masses are the same as in Table 1. As a comparison, branch 1 of equilibria of the simplified Hamiltonian (25) is plotted in grey for the same range
in δ. For small enough values of δ the eccentricity is not too high and the agreement is good. The simplified and the complete Hamiltonian diverge
when δ→ +∞.

Fig. 5. ν3/η as a function of δ, in the complete Hamiltonian, for the
resonance chain 1 : 1 : 2, along branch 1 of the libration centres in
Fig. 4. The analytical expression (33) is plotted in grey for comparison.
The colour gives the value of n1/n3. As expected from Eq. (33), ν3 is
proportional to δ far from the resonance where the eccentricities are
small.

results in Fig. 1 are visible and induce chaotic motion. Overall,
this stability map shows that the chain p : p : p + 1 is mainly
stable.

3. Tides in the p : p : p + 1 resonance chain

In Sect. 2, we assumed that the bodies are point mass objects.
In this section the approximation is removed and tidal dissipa-
tion due to differential and inelastic deformations of the bodies
is taken into account.

3.1. Extended Hamiltonian and equations of motion

Tidal contributions to the orbital evolution of the system
follow a very general formulation initiated by Darwin (1880).
Differential interactions between the bodies raise tidal bulges
and the subsequent redistribution of mass is responsible for a

perturbation in the gravitational potential generated by body j
at any point r in the space. This perturbation is given by (e.g.
Kaula 1964)

Vi, j(r) = −κ
( j)
2
Gmi

R j

(
R j

r

)3  R j

rFi

3

P2 (cos S ), (45)

where the indice i (resp. j) refers to the body responsible for the
tidal bulge (resp. where the bulge is raised), ri is the position of
body i with respect to the barycentre of body j, R j is the radius
of the body j, κ( j)

2 is its second Love number, P2 is the second
Legendre polynomial, and S is the angle between rFi and r. For
a body of mass mk, located at rk and interacting with this bulge,
the increment in potential energy is

Ui, j,k (rk) = mkVi, j (rk) . (46)

For N = 4 tidally interacting bodies, N (N − 1)2 = 36 such
potentials are generated. In the case of planets orbiting a solar-
type star, however, only tides raised by the star on the planets
and felt by the star should be considered since they are dominant
with respect to any other contribution (see Couturier et al. 2021),
which means that we only consider the three contributions Ui, j,k
with i = k = 0 and j ∈ {1, 2, 3}.

The dissipation of mechanical energy inside the planets
introduces a time delay ∆t between the tidal stress and the corre-
sponding deformation. As a consequence, the tidal bulge is not
aligned with the star and the subsequent torque affects the spins
and orbits of the planets. For any quantity z j related to planet j,
we write

zFj (t) = z j

(
t − ∆t j

)
. (47)

For a frequency of excitation ϛ, the quality factor Q j (ϛ) (Munk
& MacDonald 1960), which measures the amount of energy
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Fig. 6. Diffusion index ζν as a function of δ and ξ0. The planetary masses are as in Table 1 and the chain is 1 : 1 : 2. The top of the figure, at
ξ0 ≈ 60◦, is the main branch. The blue-to-green regions are almost quasi-periodic (stable), while the red regions are chaotic (unstable). The secular
resonances between the libration frequency ν and the precession frequency of the pericentres ν3, predicted by the analytical results (see Fig. 1), are
visible, especially the resonance 1 : 1, which can lead to chaotic orbits for high enough values of the libration amplitude. The horseshoe-shaped
orbits at the bottom are mostly chaotic, as expected, since m1 + m2 = 2 × 10−4 is close to the limit 3 × 10−4 of their existence (Leleu et al. 2015).
The main branch around the 1 : 1 resonance between ν and ν3 is tidally attractive (see Fig. 7). Systems undergoing tides entering this zone can
either converge towards the top of the figure or can become completely chaotic.

dissipated in a period 2π/ϛ, is related to the time delay as

Q−1
j (ϛ) = sin(ϛ∆t j(ϛ)) ≈ ϛ∆t j(ϛ). (48)

The dependency of ∆t j(ϛ) on ϛ is unknown, and a simple com-
monly used rheology consists in considering that the time delay
is independent of the frequency (Mignard 1979). We adopt this
tidal model in this work, reducing the rheology to the constant
parameters κ( j)

2 and Q−1
j = n j,0∆t j.

Although tides do not preserve the total energy, the
Hamiltonian formalism is extended by considering the starred
variables as parameters when deriving the equations of motion.
Their contribution to the Hamiltonian reads

Ht =
∑
j≤3

(
U( j)

t + T j

)
, (49)

where in the heliocentric reference frame

U( j)
t = −κ

( j)
2 Gm2

0

R5
j

r3
j r
F3
j

P2 (cos S ) , T j =
Θ′j

2

2α jm jR2
j

, (50)

with

S = λ j − λ
F
j −

(
θ j − θ

F
j

)
, (51)

and θ j is the rotation angle of body j, ω′j = dθ j/dt is its rotation
rate, Θ′j = α jm jR2

jω
′
j is the conjugated momentum of θ j, and

α j is a dimensionless structure constant depending on the state
equation of body j such that α jm jR2

j is its principal moment of
inertia. The transformations (9) and (11) are performed on the
tidal Hamiltonian, with the normalisations Θ j = Θ′j/Γ

? andT j =

T j/Γ
?. Denoting

q j = κ
( j)
2 ϙ

5
j , ϙ j =

R j

a j,0
, R j = C jΛ j =

Λ̃ j

Λ?
j
≈ 1,

and ∆ϑ = ϑ − ϑF,

(52)

where ϑ stands for any angle, we obtain for the tidal
Hamiltonian

Ht =
∑
j≤3

(
U

( j)
t + T j

)
, (53)

with (Couturier et al. 2021)

U
( j)
t = −q j

m0

m j
n j,0C−1

j R
−6
j R

F−6
j

(
A( j)

t + Ξ j

)
,

T j =
C jn j,0Θ2

j

2α jϙ
2
j

,

Ξ j = B( j)
t

(
R−1

j D j + RF−1
j DFj

)
+

(
R jR

F
j

)−1/2
Re

(
C( j)

t

√
D jDFj ei∆$ j

)
,

(54)
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and

A( j)
t =

1
4

+
3
4

cos 2
(
∆λ j − ∆θ j

)
,

B( j)
t =

3
4
−

15
4

cos 2
(
∆λ j − ∆θ j

)
,

C( j)
t =

3
8

ei(∆λ j−2∆θ j)+
9
4

e−i∆λ j +
147

8
e−i(3∆λ j−2∆θ j).

(55)

We note that no expansion at order 0 in the vicinity of Λ?
j is

performed since it loses relevant tidal dynamics (see Couturier
et al. 2021). We instead keep exact expressions in Λ j. The dif-
ferential system is derived from the tidal Hamiltonian using the
Hamilton-Jacobi equations and considering the starred variables
as parameters. The starred variables are then expressed by a first-
order Taylor expansion in Eq. (47) (see Couturier et al. 2021 for
more details). The perturbation to the vector field, due to tides
and at second order in eccentricity, reads

Ḋ j = 3n j,0D j
m0

m j
R−13

j
q j

Q j

(
12ω j + 57R j − 76

)
,

L̇ =3η
m0

m1
R−13

1
q1

Q1
{ω1(Λ1+27D1)+(3R1−4)(Λ1+46D1)},

σ̇ j =−
15
2

n j,0
m0

m j
q jR

−13
j ,

ξ̇ =
3
2
η

m0

m1
q1R

−13
1

4Λ1+65D1

Λ1
−

3
2
η

m0

m2
q2R

−13
2

4Λ2+65D2

Λ2
,

Γ̇ =
∑
j≤3

3
n j,0

n3,0
n j,0

m0

m j
R−13

j
q j

Q j{
ω j

(
Λ j + 27D j

)
+

(
3R j − 4

) (
Λ j + 46D j

)}
,

ġ=
∑
j≤3

3n j,0
m0

m j
R−13

j
q j

Q j{
ω j

(
Λ j + 15D j

)
+

(
3R j − 4

) (
Λ j + 27D j

)}
,

ω̇ j =−3n j,0C jα
−1
j ϙ
−2
j

m0

m j
R−13

j
q j

Q j{
ω j

(
Λ j + 15D j

)
+

(
3R j − 4

) (
Λ j + 27D j

)}
,

(56)

where we posed ω j = ω′j/n j,0. Since the differential system does
not depend on ξ2 and ξ3 and as their dynamics are of no inter-
est to us, the lines ξ̇2 and ξ̇3 are absent from the differential
system (56).

3.2. Pseudo-fixed points and linearisation in their vicinity

The total differential system that we consider for our model is
the one derived from the Hamiltonian (25), F0, to which we now
add the tidal perturbations (Eq. (56)). We denote it F : R13 7→

R13. Here we want to find the equilibria of F and to study the
linearised dynamics in their vicinity. However, although F0 has
equilibria (see Table 1), F has none. The five lines of Eq. (56)
corresponding to Γ̇, ġ, ω̇1, ω̇2, and ω̇3 cannot all vanish if D j , 0.
Since F0 has no equilibria at D j = 0 and does not contribute
to these five lines, we conclude that F has no equilibria. If the
planets are all synchronised, that is, if the ω̇ j all vanish8, then
Γ̇ < 0 and

Γ̇ ≈ −
∑
j≤3

21
n j,0

n3,0
n j,0

m0

m j

q j

Q j
D j ∝ −

∑
j≤3

m0

m j

q j

Q j
e2

j . (57)

8 This implies that ġ also vanishes, since ġ +
∑
α jϙ

2
jC
−1
j ω̇ j = 0 by

conservation of the total angular momentum.

We call pseudo-equilibrium of F, or pseudo-fixed
point of F, a point X ∈ R13 such that F (X) =
t
(
0, 0, 0, 0, 0, 0, 0, 0, Γ̇ (X) , 0, 0, 0, 0

)
. Even though it does

not have equilibria, F has pseudo-equilibria, and we find them
using an extension of the Newton–Raphson-based algorithm
that we developed in Sect. 2.2.3.

Equation (57) shows that, on a branch of pseudo equilibria
of F, the parameter Γ (and thus the parameter δ, see Eq. (38))
drifts at a speed proportional to the square of the eccentricities.
This means that, with tides, the system travels along the main
branch from right to left in Fig. 1 (Delisle et al. 2014) much more
quickly when δ > 0 than when δ < 0 (due to high eccentricities
for positive δ). As the system travels, whether or not it stays close
to the main branch or moves away depends on the linear stability
of the differential system F in the vicinity of the branch. That
is, it depends on the real parts of the eigenvalues of the linear
system associated with F. Since Γ is not constant at the pseudo-
fixed points, but drifts at a speed given by Eq. (57), computing
the eigenvalues of the linearised system makes sense only if Γ
drifts slowly enough, that is, only if∣∣∣Γ̇∣∣∣ � max

k≤13
|Re (λk)|, (58)

where the λk are the eigenvalues of the linearised sys-
tem. Indeed, |Γ̇|−1 is the timescale of evolution of Γ, while
(maxk≤13 |Re (λk)|)−1 is the timescale of tidal evolution. When the
criterion (58) is fulfilled, Γ can be considered constant on the
timescale of tidal evolution, and the real parts of the linearised
system have physical meaning.

Branch 3 always has high eccentricities (see Fig. 2) and exists
only for δ > 5.997. The drift in δ towards negative values is quick
at high eccentricity (see Eq. (57)), and so branch 3 is tidally very
unstable and uninteresting to us. Branch 2 has low values of the
eccentricities at large δ, but the existence of a hyperbolic zone
at 5.55 ≤ δ ≤ 5.80 (see Table 1) makes it uninteresting as well
since the drift ensures that this zone is reached. Hence, we limit
the study of tidal dissipation to the main branch (branch 1).

In Fig. 7 we plot the real parts of the eigenvalues of the
linearised system associated with F, along its main branch of
pseudo equilibria, which is a little perturbation of the main
branch of equilibria of Eq. (25). To guarantee that the condi-
tion (58) is well respected, we limit ourselves to δ < 1. This is
not really a restriction since the tides ensure that this region is
quickly reached. We also plot in the same figure the value of Γ̇
for comparison. Only the eigenvalues that are the perturbations
of Eqs. (41) and (42) are plotted. In the absence of a third planet,
Couturier et al. (2021) show that the eigenvalue responsible for
the exponential increase in the libration amplitude of ξ, and thus
for the destruction of the co-orbital motion, has a real part

Re (λ) =
9
2
η

m0

m1 + m2

(
m1

m2

q2

Q2
+

m2

m1

q1

Q1

)
, (59)

and we normalise by this quantity in Fig. 7 and Appendix F.
The region −5.64 ≤ δ ≤ −5.47, at the 1 : 1 secular resonance
between the libration frequency of the co-orbitals, ν, and the fre-
quency of all the pericentres at the pseudo equilibria, ν3, is such
that all the eigenvalues of the system have negative real parts, and
we expect this region to be linearly stable9. We show in Sect. 4
that this is indeed the case. The linear stability is only temporary
though, since the drift in δ ensures that this region is eventually
9 Even though it is slightly chaotic along the main branch for the
conservative system, see the map in Fig. 6.
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Fig. 7. Real parts of the eigenvalues of the linearised system associated with F in the vicinity of its main branch of pseudo equilibria, for −7 ≤ δ ≤ 1
(left) and −6.2 ≤ δ ≤ −5 (right). The planetary masses are as in Table 1 and the resonance chain is 1 : 1 : 2. Only the four eigenvalues associated
with the four degrees of freedom of the conservative system are represented. The other eigenvalues (like those associated with the rotation rates
ω j) are of no interest. The real parts behave erratically at the 1 : 1 secular resonance between ν and ν3 (see Fig. 1) in such a way that all of them
are negative for −5.64 ≤ δ ≤ −5.47, yielding a linear stability in this region. For δ ≤ −0.104, at least three out of four real parts are negative. In the
region δ ≤ 1 we have |Γ̇|/Re (λ) ≤ 0.012, and the criterion (58) is very well respected. Similar figures with other planetary masses are available in
Appendix F.

left. We call this the linearly stable region in the remainder of
this work. The range in δ corresponding to the linearly stable
region strongly depends on m3/ (m1 + m2). In Fig. 8 we display
its position in the plane (m3, δ).

4. Numerical simulations and discussions

In this section we investigate the ability of our model to predict
the behaviour of a system in the p : p : p + 1 resonance under
tidal dissipation. We also check the results drawn in Sect. 3.2 on
the linearised dynamics in the vicinity of the main branch.

4.1. Procedure

We numerically integrate two different sets of equations. The
first set, our model, is the differential system F, that is, the vector
field derived from Eq. (25) to which we add the tidal perturba-
tions (Eq. (56)). The second set is a direct N-body simulation of
the complete system, with the constant-∆t model, given by the
set of Eq. (E.1).

When the third planet is absent, the relevant parameters to
consider to predict the destruction time of a system of two co-
orbital planets are (Couturier et al. 2021)

Ω =
q1

Q1
+

q2

Q2
, x =

m1

m2
, y =

q2Q1

q1Q2
, ε =

m1 + m2

m0
, (60)

namely the total dissipation rate, the mass ratio, the dissipation
rate ratio, and the total co-orbital mass ratio. Since we are inter-
ested in comparing the lifetimes of the co-orbitals when they are
inside the resonance chain 1 : 1 : 2 with their lifetimes when they
are alone, we make use of these parameters. Due to the complex-
ity of the dynamics of the resonance chain p : p : p + 1, we do

Table 2. Parameters of the two numerical simulations.

# Ω x y ε δ

0 4 × 10−12 1 1 2 × 10−4 −5.51
1 4 × 10−12 1/10 100 2 × 10−4 −5.46

Notes. In this table, the chosen value of δ is that of the maximum of
the region where all the real parts are negative, ensuring that the system
crosses the whole linearly stable region. The rotations of the planets are
initially synchronised and both sets of parameters verify m3/m0 = 10−4,
κ(3)

2 = 0 and ā = 0.02 AU. System 1 is the system that was used for all
the figures in Sects. 2 and 3.

not have analytical expressions depending on the parameters of
the lifetime of the system, and trying to draw a complete pic-
ture would require a very large number of simulations. Instead,
we are interested in performing a small number of simulations
with parameters that we judge interesting. Thus, we only show
the evolution of two systems for the chain 1 : 1 : 2, whose
parameters are given in Table 2. Nevertheless, we performed
additional simulations with different choices for the planetary
masses and the initial δ. The most interesting ones are presented
in Appendix F, where we thoroughly discuss the influence of a
larger or smaller value for m3.

For the systems listed in Table 2, the chosen value of δ is such
that the beginning of the simulation is at the rightmost point of
the linearly stable region; these regions are −5.67 ≤ δ ≤ −5.52
for system 0 and −5.64 ≤ δ ≤ −5.47 for system 1 (see Fig. 7).
These systems are thus expected to be initially very stable until
they leave this region (due to the drift in δ, see Sect. 3.2).
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Fig. 8. Position of the linearly stable region for the resonance chain
1 : 1 : 2 in the plane (m3, δ). For every point in this plane the eigen-
values of the linearised system associated with the vector field F are
computed, and the point is plotted only if all the real parts are nega-
tive. The co-orbital masses are m1 = m2 = 10−4 and the tidal parameters
are those of the system 0 in Table 2. The position of the linearly sta-
ble region weakly depends on m1/m2 and on the tidal parameters. The
colour gives n1/n3 and shows that the chain stabilises the dynamics
far from the Keplerian resonance (for which n1/n3 = 2). The dashed
yellow line plots the secular 1 : 1 resonance between ν and ν3, com-
puted with Eqs. (42) and (33), respectively. For m3 > 18 (m1 + m2), the
linearly stable region disappears, while for m3 < 0.29 (m1 + m2), two
distinct linearly stable regions exist, whose widths tend to 0 with m3
(see Appendix F for a discussion of the impact of m3 on the dynamics).

To integrate the two systems with the simplified model F
(Eqs. (25) and (56)), we find, for the given value of δ and
the planetary masses, the position of the fixed point of the
Hamiltonian (25), and use it as initial condition for the integra-
tion, with a shift ∆ξ = 0.1◦ in ξ, in order to not start exactly at
the fixed point. The pseudo fixed point of the model with tides
is very close to the fixed point of Eq. (25), and we ignore the
difference. To integrate the system with the direct N-body set
of Eq. (E.1), we find, for the given value of δ and the planetary
masses, the position of the libration centre with the algorithm
described in Sect. 2.2.4, and use it as the initial condition for the
integration, again with the shift ∆ξ = 0.1◦.

When the co-orbital planets are alone, the positivity of Re (λ)
in Eq. (59) ensures that the system systematically reaches the
horseshoe-shaped orbits and is destroyed by close encounters.
In this case the time τhs needed to reach the horseshoe-shaped
orbits is (Couturier et al. 2021)

τhs =
ε

9πΩ

x (1 + y)
1 + yx2 ln

(
60◦

∆ξ

)
T, (61)

where T = 2π/η is the co-orbital period. Denoting τdest the co-
orbital lifetime without third planet, τhs does not significantly
differ from τdest for a wide range of total co-orbital mass, and

as long as 10−9 . ε . 0.005, we have 1/2 . τdest/τhs . 2
(Couturier et al. 2021). We can thus consider that τhs is the life-
time of the co-orbital pair, in the absence of the third planet10.
For ∆ξ = 0.1◦, in the case of two co-orbital Earth-like planets
(using the tidal parameters of Lainey 2016), we have11

τhs = 3.771 Gyr
( ā
0.04 AU

)8 (
m0

m�

)−3/2

. (62)

We give in Appendix G the time τhs, computed from Eq. (61), for
a variety of hypothetical co-orbital pairs. We normalise the time
by τhs in Figs. 9, 10, 11, and in Appendix F.

4.2. Mechanisms of co-orbital stabilisation

In Figs. 9 and 10 the angles ξ and σ j are plotted as a function
of time. The system spends a large amount of time close to the
main branch of equilibria, which allows the co-orbitals to live
notably longer with the presence of the third planet. This can be
seen from the destruction occurring at a time t > τhs. When the
system crosses the linearly stable region, the libration amplitude
of ξ decreases instead of increasing exponentially, since the real
parts of all the eigenvalues of the linearised system associated
with F are negative. When the system leaves this region due to
the drift in δ and the real part of one eigenvalue becomes positive
again, the libration amplitude of ξ is much smaller than it was
before entering the linearly stable region. As a result, the system
needs more time to reach large libration amplitudes and settle in
horseshoe-shaped orbits, which delays the co-orbital destruction;
in other words, crossing the linearly stable region while being
sufficiently close to the main branch (so that the linear dynamics
dominates) guarantees a co-orbital lifetime longer than without
the third planet.

In Fig. 9, the negative real parts of all the eigenvalues in the
linearly stable region allow the libration amplitude of ξ to reach
values as small as 1.8 arcsec at t = 0.57 τhs. This minimum hap-
pens after the linearly stable region is left since the proper mode
associated with the newly positive real part (in purple in Fig. 7)
has been completely damped by the linearly stable region and
some time is needed to pump it noticeably. Similarly, in Fig. 10,
3.5 arcsec of libration amplitude are reached at t = 1.95 τhs. The
early augmentation of the libration amplitude of the angles in
the bottom plot is due to the fact that in the direct simulation, the
linearly stable region is not exactly at the same values of δ as in
the simplified model.

The linearly stable region is not the only reason why the co-
orbitals in resonant chains can live longer. Another phenomenon,
which we refer to as eccentricity damping stabilisation in the
rest of this work, allows the libration amplitude to not cross the
separatrix leading to horseshoe-shaped orbits. After an expo-
nential increase in the libration amplitudes of ξ and σ j, due
to at least one eigenvalue with a strictly positive real part, the
amplitudes suddenly decrease and the system returns close to the
equilibria. This stabilisation of ξ, due to eccentricity damping
(see Fig. 11), can happen several times before horseshoe-shaped
orbits are finally reached, and the system is destroyed (see
Fig. 10). The explanation of the eccentricity damping stabilisa-
tion relies on the behaviour of the eccentricities. In Fig. 11, we
plot the eccentricity e1 of planet 1 as a function of time, together
with a schema of its behaviour in the plane (e cos$, e sin$). At
time t = t1 the system is still close to the fixed points, hence the
quantity e1ei$1 (or any of the two other eccentricities) describes

10 Especially for ε = 2 × 10−4, for which τdest ≈ 1.1 τhs.
11 For the constant-Q model, the exponent is 6.5 instead of 8.
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Fig. 9. Evolution of ξ and the σ j (in degrees) as a function of time for system 1 (see Table 2) as integrated by the simplified model F (Eqs. (25)
and (56)) (top) and the direct N-body simulation (Eq. (E.1)) (bottom). In the direct simulation horseshoe-shaped orbits are reached after 6.42 τhs,
and the co-orbital motion is destroyed shortly after that (chaoticity in Fig. 6). The model reaches the horseshoe-shaped orbits at t = 13.1 τhs. Here,
the presence of the chain increases the lifetime of the co-orbitals by a factor of 6.42. The thickness of the lines in the bottom plot (see e.g. σ3) is
due to the short-period oscillations that were averaged out in the model. The grey-shaded area is the linearly stable region.

a circle of small radius. Outside the linearly stable region, the
eigenvalues of the linearised systems have one positive real part,
and as time evolves the radius of the circle grows, while its centre
(the equilibrium position of e1eiσ1 ) gets closer to the origin due
to the drift in δ. At time t > t2 the circle e1ei$1 surrounds the ori-
gin and keeps growing, as predicted by the eigenvalues, which
triggers a jump in the eccentricity. On the one hand, the lin-
earised system predicts that the circle drawn by e1ei$1 grows to
infinity; on the other hand, tides impose an exponential decay of
the eccentricities. Indeed, the first line of Eq. (56) yields (Correia
2009)

ė j = −
e j

τ j
, τ j =

2
21

m j

m0

Q j

q j
n−1

j,0, (63)

and so, at time t = t3, the circle reaches its maximum radius,
the system is now far from its equilibrium, and tides, through
non-linear contributions of the vector field F, force the eccen-
tricities to decrease, which brings the system back to the vicinity
of the fixed point at t = t4, where the libration amplitude of the
σ j, but also of ξ, is small. In Figs. 9 and 10, several occurrences
of the eccentricity damping stabilisation prevent the angle ξ from
reaching the horseshoe-shaped orbits and increase the lifetime of
the co-orbital planets.

While the stability induced by the linearly stable region
comes from linear contributions of the vector field F, the
eccentricity damping stabilisation comes from non-linear
contributions. This latter mechanism works thanks to a strong
coupling between the eccentricities

(
D j, σ j

)
and the co-orbital

angle (L, ξ). In the region δ < 0 (tidally interesting), at most one
eigenvalue has a positive real part (see Fig. 7), but due to the
coupling, it allows an exponential growth of the libration angle
ξ, as well as the eccentricities, which makes the eccentricity

damping stabilisation possible. When the time t = t3 is reached,
the coupling ensures that the eccentricity damping also induces
a damping of the libration angle ξ, hence the stabilisation
of the co-orbital motion. In the absence of the third planet,
Couturier et al. (2021) showed that the eccentricities are
uncoupled from the co-orbital angle ξ. This means that the
positive real part (Eq. (59)) associated with (L, ξ) does not
induce an exponential growth of the eccentricities, which are
on the contrary damped to 0 due to the negative real parts
of their eigenvalues. In this case, because of the decoupling,
even if some other mechanism increases the eccentricities, the
eccentricity damping predicted by Eq. (63) still occurs, but it
does not induce a stabilisation of ξ.

The occurrence of the eccentricity damping stabilisation is
not systematic. It occurs only if the time t = t3 happens before
the co-orbital planets reach horseshoe-shaped orbits. If not, the
co-orbitals are destroyed before the exponential decrease in the
eccentricities can save them. Deciding whether or not a given
system will be saved by the eccentricity damping stabilisation
requires knowing the proper modes of the linearised system asso-
ciated with F and how (L, ξ) and the

(
D j, σ j

)
are written in the

corresponding diagonal basis. Only a numerical work is possi-
ble, and we did not undertake it since it is much easier to simply
run the corresponding simulation.

If a larger initial δ-value is chosen in these simulations, the
system initially has at least one positive real part and moves
away from the fixed point at exponential speed. If the eccentric-
ity damping stabilisation works, or if the initial δ-value is small
enough, the linearly stable region is reached. However, if the sys-
tem reaches the linearly stable region when it is too far from the
equilibria, the non-linear contributions of F, combined with the
chaotic motion induced by the 1 : 1 secular resonance between
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Fig. 10. Evolution of ξ and the σ j (in degrees) as a function of time for system 0 as integrated by the simplified model F (Eqs. (25) and (56)) (top)
and by the direct N-body simulation (Eq. (E.1)) (bottom). In the direct simulation the horseshoe-shaped orbits are reached after 7.8 τhs, and the
co-orbital motion is destroyed shortly after that, (chaoticity in Fig. 6). The model reaches horseshoe-shaped orbits at 8.1 τhs. The grey-shaded area
is the linearly stable region.

Fig. 11. Value of e1 as a function of time for system 1 in Table 2, as integrated by the simplified model F (Eqs. (25) and (56)) (bottom), and a
schematic representation of the eccentricity vector e1ei$1 , for four particular times (top). The schema explains the different stages of the eccentricity
damping stabilisation mechanism. The drift in δ brings the centre of the circle drawn by e1ei$1 (equilibrium value of e1 along the main branch)
closer to the origin (see Fig. 1).

ν and ν3 (see the stability map in Fig. 6), can lead to peculiar
orbits (e.g. switching between the Lagrangian equilibria L4 and
L5, that is, permutation of the co-orbitals). Entering the linearly
stable region while still close enough to the equilibria ensures
a convergence towards the main branch, and thus an increased
stability.

4.3. Discussion

It can be seen in Fig. 5 that for δ = −5.46 the system is already
far from the exact resonance. For system 1 at δ = −5.46, we have

n1/n3 = 2.072. As time goes by, δ drifts towards more negative
values, and at t = 6.42 τhs, when it is about to reach horseshoe-
shaped orbits and be destroyed, system 1 verifies δ = −13.77
and n1/n3 = 2.186. Similar considerations are valid for system
0, which means that the system is already outside the reso-
nance, but it is still influenced by the chain. As the system leaves
the resonance due to the drift in δ, the coupling between the
eccentricities and ξ becomes weaker, meaning that the eccen-
tricity damping stabilisation ends up failing. This prevents the
co-orbitals from living forever. We nevertheless checked that it
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can work for simulations starting at n1/n3 = 2.37. Only positive
values of δ allow for n1/n3 a value close to (p + 1) /p = 2 (see
Fig. 5). When a positive value of δ is chosen at t = 0, the quick
drift in δ due to the high values of the eccentricities (see Eq. (57))
forces the system to reach the region δ < 0 on a timescale much
shorter than the timescale of the increase in the libration ampli-
tude of the angles. For systems on the main branch this means
that tides favour ratio n1/n3 values above their Keplerian value.
This result was shown by Delisle et al. (2014) for a two-planet
chain and is confirmed by the observations of the Kepler mis-
sion, where a large number of exoplanets were discovered with a
mean motion ratio slightly higher than (p + 1) /p (e.g. Delisle &
Laskar 2014).

This section shows that our simplified model (Eqs. (25) and
(56)) is able to satisfyingly predict the tidal evolution of a reso-
nance chain of the form p : p : p + 1, at least qualitatively, since
a precise quantitative description can only be achieved by run-
ning the simulation of the direct set of Eq. (E.1). This contrasts
with the analytical work performed by Couturier et al. (2021) in
the case of lone co-orbitals, where the secular model is able to
quantitatively predict the outcome of the direct simulations of
the complete system with less than 1% relative error (see their
Table 3).

The influence of m3/ (m1 + m2) on the co-orbital dynamics
is thoroughly discussed in Appendix F. We show that, for a
large m3, the linearly stable region is not efficient in stabilis-
ing the libration amplitude of ξ, while the eccentricity damping
stabilisation is very efficient (see Fig. F.1). As m3 decreases, the
eccentricity damping stabilisation loses efficiency until it does
not occur for very small m3-values (see Fig. F.3). The linearly
stable region has a maximum efficiency for m3 ≈ 0.29 (m1 + m2)
(see Fig. F.2). For a small value of m3, it can stabilise ξ only in a
tiny neighbourhood around the 1:1 secular resonance between ν
and ν3 (see Fig. F.3). Finally, a premature destruction of the co-
orbital motion (at t < τhs) can occur for a very large m3-value, if
the system is already far from the resonance, at a δ-value much
lower than its value at the 1 : 1 secular resonance between ν and
ν3 (see Fig. F.4).

In terms of co-orbital lifetime, the worst-case scenario occurs
when the eccentricity damping stabilisation does not work and
when the linearly stable region is not crossed (or is crossed while
too far from the main branch). In these cases the only positive
real part in the region δ < 0 often has a value close to Re (λ)
(Fig. 7), and the system reaches the horseshoe-shaped orbits at a
time close to τhs.

In summary, in most cases the resonance chain increases
the co-orbital lifetime, but in a few cases it can also decrease
it, especially when m3 � m1 + m2 and δ is very negative (see
Fig. F.4).

5. Conclusion

In this work, we have studied the dynamics of a pair of co-
orbital planets in the presence of a first-order resonance with
a third planet orbiting outside the co-orbitals. We have shown
that for systems deep inside this resonance, many equilibria (or
libration centres) exist, at least three of which are stable. The
existence of a secular resonance between the libration frequency
of the co-orbitals and the precession frequency of the pericen-
tres can lead to chaotic orbits in the conservative case. However,
when tides are involved, we show that this resonance stabilises
the co-orbital dynamics. Another stabilisation mechanism, due
to eccentricity damping, is presented and explained. The model
that we built is able to predict the position of the libration centres

of the complete system, and we developed an algorithm to find
them exactly. When tides are involved, the model reliably gives
the qualitative behaviour of the system and, to a certain extent,
its quantitative behaviour.

This work shows that when tidal dissipation is included, co-
orbital systems are more stable if they are inside a resonance
chain of the form p : p : p + 1, which increases the chances of a
still-to-come detection of a co-orbital pair of exoplanets, since
Leleu et al. (2019) have shown that co-orbital pairs are often
formed within a resonance chain. While the analytical work of
this paper is performed for any value of the integer p, figures
are restricted to the chain 1 : 1 : 2 where p = 1. We neverthe-
less checked that higher values of p do not impact the qualitative
results.

One important contribution of this work is the discovery of
a 1 : 1 secular resonance between the libration of the critical
angle λ1 − λ2 and the precession of the pericentres $ j, as well as
the inherent dynamical consequences (see Figs. 6 and 7). Libra-
tion centres, quasi-periodic orbits of the unaveraged problem that
generalise the equilibria of the averaged model (Sect. 2.2.1), are
such that all the pericentres precess at the same frequency in
their vicinity, which holds true for every resonance chain of any
number of planets. We thus expect, for other resonance chains,
the existence of similar secular resonances, for example between
ξ = λ1 − 4λ2 + 3λ3 and the $ j for the chain 1 : 2 : 3.
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Appendix A: Notations

For convenience, we list in Table A.1 the notations used
throughout this work12.

Appendix B: Coefficients in the expansion of the
Hamiltonian

We give here the expressions of the coefficients appearing
in Eqs. (21) and (22). They depend on the Laplace coef-
ficients bm

n/2 (α) (Laskar & Robutel 1995), and to improve
readability we denote bm

n = bm
n/2 (α), where α = ā/a3,0. For

the resonance 1 : 1 : 2 we have

C(1)
1,1 = −αb1

3

(
7
6

+
2
3
α−2 +

5
3
α2

)
+ b0

3

(
1 +

5
2
α2

)
≈ 1.1904937,

C(1)
1,2 = b1

3

(
1 +

3
2
α2

)
−

5
2
αb0

3 +
1
√
α
≈ −0.4283898, (B.1)

for the first order in eccentricity and

C(2)
1,1 = αb1

3

(
263
168

+
16
35
α−4 +

89
105

α−2 +
341
105

α2 +
184
35

α4
)

− b0
3

(
71
70

+
24
35
α−2 +

67
35
α2 +

276
35

α4
)
≈ −1.6957266,

C(2)
1,2 = αb1

3

(
65
24

+
4
3
α−2 +

13
3
α2

)
− b0

3

(
2 +

13
2
α2

)
≈ −3.5937942,

C(2)
1,3 = −b1

3

(
29
10

+
8
5
α−2 +

59
10
α2 +

48
5
α4

)
+ αb0

3

(
69
20

+
12
5
α−2 +

72
5
α2

)
≈ 4.9668470,

C(2)
1,4 = −

1
8
αb1

3 ≈ −0.3876274,

C(2)
1,5 =

1
2

b1
3

(
1 + α2

)
−

3
4
αb0

3 ≈ 0.5756950, (B.2)

for the second order.

Appendix C: Simplified differential system

We give in this appendix the expression of the differen-
tial system derived from the Hamiltonian HK + H (0) + H (1),
which is the Hamiltonian (25) truncated at first order in
eccentricity, after the simplifications stated in Sect. 2.2.2

12 ϙ (qoppa) is an archaic Greek letter.

have been performed. We have

Ḋ1 = −
C(1)

p,1

√
2C1D1m1n3,0

m0C3
sin

(
p
π

3
− σ1

)
,

Ḋ2 = −
C(1)

p,1

√
2C2D2m2n3,0

m0C3
sinσ2,

Ḋ3 =−

√
2C3D3C(1)

p,2n3,0

m0C3

(
m1 sin

(
p
π

3
−σ3

)
−m2 sinσ3

)
,

∆̇L = η
m2 sin ξ
m0C1

(
1 −

1
∆3

)
,

σ̇1 =
∂HK

∂∆Υ
+

C1C(1)
p,1m1n3,0

C3
√

2C1D1m0
cos

(
p
π

3
− σ1

)
,

σ̇2 =
∂HK

∂∆Υ
+

C2C(1)
p,1m2n3,0

C3
√

2C2D2m0
cosσ2,

σ̇3 =
∂HK

∂∆Υ
+

C(1)
p,2n3,0

m0
√

2C3D3

(
m1 cos

(
p
π

3
−σ3

)
+m2 cosσ3

)
,

ξ̇ = −3η (C1 + C2) ∆L, (C.1)

where

∂HK

∂∆Υ
=−3η

{(
p2C2 + p (p + 1) C3

)
∆Υ + pC2∆L?

}
. (C.2)

Appendix D: Expression of the matrix Q6

We give in this appendix the matrix Q6 appearing in Eq. (40).
We denote

r j =

√
2D j, c3 = cosσ3, s3 = sinσ3, s = sin

pπ
3
,

c = cos
pπ
3
, I = 3ηp (C3 + p (C2 + C3)) , (D.1)

and obtain Q6 =



Icsr1
2 Isr1r2 c3Isr1r3 Is2r1

2 − ν3 0 Is3 sr1r3

0 0 0 0 −ν3 0
Is3cr1r3 Is3r2r3 c3Is3r3

2 Is3 sr1r3 0 Is3
2r3

2 − ν3

−Ic2r1
2 + ν3 −Icr1r2 −c3Icr1r3 −Icsr1

2 0 −Is3cr1r3

−Icr1r2 −Ir2
2 + ν3 −c3Ir2r3 −Isr1r2 0 −Is3r2r3

−c3Icr1r3 −c3Ir2r3 −c3
2Ir3

2 + ν3 −c3Isr1r3 0 −c3Is3r3
2


.

Appendix E: Direct complete model for tides

The complete equations of motion governing the tidal evolu-
tion of a planar (N + 1)-body system in a heliocentric ref-
erence frame, using a linear constant time-lag tidal model,
are given, for 1 ≤ j ≤ N, by (Mignard 1979)

r̈ j = −
µ j

r3
j

r j +
∑
k, j

Gmk

 rk − r j∣∣∣rk − r j

∣∣∣3 − rk

r3
k

 +
f j

β j
+

∑
k, j

fk

m0
,

θ̈ j =−3∆t j

κ
( j)
2 Gm2

0R3
j

α jm jr8
j

[
θ̇ r2

j−
(
r j× ṙ j

)
· k

]
, (E.1)

where r j is the heliocentric position vector, θ j the rotation angle
of the planet j, k is the unit vector normal to the orbital plane,
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m0, m1, m2, m3 Masses of the star, leading and trailing co-orbitals, and outermost planet
R1, R2, R3 Radii of the leading and trailing co-orbitals and the outermost planet
p Integer such that the resonance chain is p : p : p + 1
G, β j, µ j, µ0 Gravitational constant, m0m j/

(
m0 + m j

)
, G

(
m0 + m j

)
, Gm0

a j, e j, λ j, $ j Semi-major axis, eccentricity, mean longitude, longitude of pericentre
ξ, σ j, ∆, Λ j λ1 − λ2, −pλ2 + (p + 1) λ3 −$ j,

√
2 − 2 cos ξ, see Eqs. (1) and (11)

G and Γ, C j, D j See Eqs. (9) and (11), see Eq. (15), normalised AMD (Eqs. (1), (9), and (11))
n j,0, a j,0 Nominal mean motions, nominal semi-major axes
η, ā, ν, ν3 n1,0 = n2,0 = (p + 1) n3,0/p, a1,0 = a2,0, see Eq. (42), see Eqs. (28) and (33)
C(n)

p,m, δ, ∆G, ∆Υ? See Appendix B, see Eq. (37), see Eq. (38), see Eq. (29)
κ

( j)
2 , ∆t j, θ j, α j Second Love number, time-lag, rotation angle, structure coefficient

Q j, ϙ j, q j,R j, ω j 1/
(
n j,0∆t j

)
, R j/a j,0, κ( j)

2 ϙ
5
j , C jΛ j ≈ 1, θ̇ j/n j,0

F, F0 Total differential system of the model with tides, without tides
Re (λ) , τhs See Eq. (59), see Eq. (61)
Ω, x, y, ε See Eq. (60)

Table A.1: Notations used in this paper

and f j is the force arising from the tidal potential energy created
by the deformation of planet j (Eq. (46)):

f j = − 3
κ

( j)
2 Gm2

0R5
j

r8
j

r j − 3
κ

( j)
2 Gm2

0R5
j

r10
j

∆t j[
2
(
r j · ṙ j

)
r j + r2

j

(
θ̇ r j × k + ṙ j

)]
.

(E.2)

Appendix F: More numerical simulations

In this appendix we present the six most interesting simulations
that were not shown in Sect. 4. We particularly focus on the
influence of the mass m3 on the co-orbital dynamics. All the
simulations comply with m1 = m2 = 10−4 m0, and their tidal
parameters are those of system 0 in Table 2. We only integrate
here the simplified model F (Eq. (56)) (see Sect. 3.2). For each
simulation, the real parts of the eigenvalues of the linearised
system associated with F are shown alongside the time evolu-
tion of the angles ξ and σ j. In the figures of the real parts, a
dashed vertical black line shows the starting value of δ, denoted
δ0, of the corresponding simulation. In the figures of the angles, a
grey-shaded area shows the linearly stable region, when relevant.
Choosing other tidal parameters does not significantly modify
the figures shown here, since we normalise the real parts by
Re (λ) (see Eq. (59)) and the times by τhs (see Eq. (61)), which is
the time to reach horseshoe-shaped orbits (close to the destruc-
tion time) in the absence of a third planet. We invite the reader to
have a look at Fig. 8 before reading this appendix, as m3 and δ are
the only varying parameters between the different simulations.
For each δ0 and m3, the simulation starts at the corresponding
point of the main branch, with a shift ∆ξ = 0.1◦ to ξ, in order not
to start exactly at equilibrium.

In Fig. F.1, we have m3 = 8 (m1 + m2), which corresponds
to the value yielding the largest linearly stable region (see Fig.
8). However, for this choice of m3, the linearly stable region is
located at larger δ-values, and so it drifts quickly (see Sect. 3.2).
Furthermore, Eq. (57) shows that the drift in δ is proportional
to

∑
j m2/3

j , and so, due to the rather large m3-value, the sys-
tem leaves the linearly stable region after less than 0.1 τhs, much
more quickly than in Fig. F.2, where m3 is smaller. The ampli-
tude of ξ reaches 0.07◦ at its lowest, not significantly smaller
than its initial value of 0.1◦. However, for this choice of m3,

Fig. F.1: Evolution of ξ and the σ j for m3 = 8 (m1 + m2).

the eccentricity damping stabilisation is very efficient, yielding
a co-orbital lifetime of 8 τhs.

In Fig. F.2, we have m3 = 0.29 (m1 + m2), which is the best
compromise between the width of the linearly stable region and
speed of the drift in δ. For this value of m3, the linearly stable
region splits into two distinct strips (see Fig. 8). The system stays
in this region for 2 τhs, 20 times longer than in Fig. F.1, and at
t = 3.2 τhs, ξ librates with only 0.0000012◦ of amplitude, gaining
a factor of 80 000 from the initial 0.1◦. The system stays close to
the main branch for 6 τhs, longer than any other simulation that
we performed. The eccentricity damping stabilisation is not as
efficient as for m3 = 8 (m1 + m2), but still allows the system to
reach 8.5 τhs before the destruction of the co-orbital motion.

In Fig. F.3, we have m3 = (m1 + m2) /32. With such a low
mass for the third planet, the two linearly stable regions are
extremely narrow, and the linear stability occurs only if the sys-
tem is exactly at the 1 : 1 secular resonance between ν and ν3
(the initial semi-major axes between the two simulations are very
close with a tiny difference in δ). Otherwise, the unique positive
real part isRe (λ) everywhere and the destruction occurs at τhs, as
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Fig. F.2: Evolution of ξ and the σ j for m3 = 0.29(m1 + m2).

Fig. F.3: Evolution of ξ and the σ j for m3 = (m1 + m2) /32.

in the absence of the third planet, since the eccentricity damping
stabilisation does not work.

In Fig. F.4, the third planet has a mass m3 = 19 (m1 + m2) and
the linearly stable region does not exist (see Fig. 8). We perform a
simulation at the 1 : 1 secular resonance between ν and ν3, where
it would be if it existed. In this region the positive real parts are
not greater than Re (λ), and with the eccentricity damping sta-
bilisation, the co-orbitals almost reach 4 τhs. However, very far
from the Keplerian resonance (n1/n3 = 2.6 at δ = −6, for this
choice of m3), the unique positive real part is significantly greater
than Re (λ). Furthermore, as (L, ξ) and

(
D j, σ j

)
are weakly cou-

pled far from the Keplerian resonance, the eccentricity damping
stabilisation is not efficient, leading to the premature destruc-
tion (here 0.8 τhs) of the co-orbital motion. Choosing a smaller δ
leads to even quicker destruction.

Fig. F.4: Evolution of ξ and the σ j for m3 = 19 (m1 + m2).

Appendix G: τhs for hypothetical co-orbital pairs

We give in Table G.1 the time τhs for hypothetical co-orbital
pairs of exoplanets made up of Solar System bodies. The semi-
major axis is ā = 0.04 AU and the mass of the host star is
m0 = m�, but τhs is easily deduced for other values using the
exponents of Eq. (62). We choose ∆ξ = 0.1◦, and again, it is
straightforward to extend the results to another choice of ∆ξ,
since τhs ∝ ln (60◦/∆ξ) (see Eq.(61)).

Co-orbital pair τhs (Gyr) Co-orbital pair τhs (Gyr)
Earth & Earth 3.771 Earth & Moon 44.09
Earth & Mars 5.480 Earth & Jupiter 3.722
Earth & Io 2.086 Moon & Moon 50.76
Moon & Mars 28.16 Moon & Jupiter 50.63
Moon & Io 4.374 Mars & Mars 5.761
Mars & Jupiter 5.747 Mars & Io 2.248
Jupiter&Jupiter 0.7201 Jupiter & Io 2.072
Io & Io 2.072

Table G.1: τhs for some co-orbital systems.

In this table, the tidal parameters are those of Lainey (2016)
and only the five bodies for which κ2/Q is well constrained are
included. The close τhs between some systems is purely coinci-
dental. It is due to the particular value of Jupiter’s κ2/Q and to
the fact that this body is much larger and much more massive
than the other four.
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