New Astronomy 114 (2025) 102313

Contents lists available at ScienceDirect

new
astronomy

New Astronomy

journal homepage: www.elsevier.com/locate/newast

NcorpiON : A O(N) software for N-body integration in collisional and
fragmenting systems

Jérémy Couturier ", Alice C. Quillen, Miki Nakajima

Department of Earth and Environmental Sciences, University of Rochester, 227 Hutchison Hall, Rochester, 14627, NY, United States of America
Department of Physics and Astronomy, University of Rochester, 227 Hutchison Hall, Rochester, 14627, NY, United States of America

ARTICLE INFO ABSTRACT

Keywords: NcorpiON is a general purpose N-body software initially developed for the time-efficient integration of
N-body collisional and fragmenting systems of planetesimals or moonlets orbiting a central mass. It features a
Fast multipole method fragmentation model, based on crater scaling and ejecta models, able to realistically simulate a violent impact.
FMrZSI;entation The user of NcorpiON can choose between four different built-in modules to compute self-gravity and
Collgision detect collisions. One of these makes use of a mesh-based algorithm to treat mutual interactions in O(N) time.
FalcON Another module, much more efficient than the standard Barnes-Hut tree code, is a O(N) tree-based algorithm

called FalcON. It relies on fast multipole expansion for gravity computation and we adapted it to collision
detection as well. Computational time is reduced by building the tree structure using a three-dimensional
Hilbert curve. For the same precision in mutual gravity computation, NcorpiON is found to be up to 25 times
faster than the famous software REBOUND.

NcorpiON is written entirely in the C language and only needs a C compiler to run. A python add-
on, that requires only basic python libraries, produces animations of the simulations from the output files.
NcorpiON can communicate with REBOUND’s webGL viewer via MPI for 3D visualization. The name Ncorpi©ON,
reminding of a scorpion, comes from the French N-corps, meaning N-body, and from the mathematical notation
O(N), due to the running time of the software being almost linear in the total number N of bodies. NcorpiON
detects collisions and computes mutual gravity faster than REBOUND, and unlike other N-body integrators, it
can resolve a collision by fragmentation. The fast multipole expansions are implemented up to order eight to
allow for a high precision in mutual gravity computation.

1. Introduction

NcorpiON is an open-source N-body software specialized in simu-
lations of collisional systems, published under the GNU General Public
License. It has its own website available here! and the source code is
publicly distributed on github.?

The development of the software began in parallel of our work
on the formation of the Moon, and as such, we hereafter refer to the
orbiting bodies as moonlets, although NcorpiON is a general-purpose
N-body software. NcorpiON is particularly adapted to the simulation of
systems where the mean free path is short, typically less than the semi-
major axis, but also of systems where self-gravity plays an important
role. The Moon is thought to have formed from a disk generated by a
giant impact, and previous works on the formation of the Moon decide
upon collision if the moonlets should bounce back or merge depending

on the impact parameters (e.g. Ida et al., 1997, Salmon and Canup,
2012), but never consider the fact that a violent collision may lead to
their fragmentation. In order to address this issue, NcorpiON features
a built-in fragmentation model that is based on numerous studies of
impact and crater scaling (Holsapple and Housen, 1986, Stewart and
Leinhardt, 2009, Housen and Holsapple, 2011, Leinhardt and Stewart,
2012, Suetsugu et al., 2018) to properly model a violent collision. Our
study of the Moon formation makes extensive use of Ncorpi©ON and will
be published after the present work.

Since a recent update, NcorpiON can also be used to simulate a
viscoelastic body. In this case, the viscoelastic body is modeled by a
collection of N nodes connected by springs and dampers in parallel
(e.g Frouard et al., 2016). We are currently using the viscoelastic
module of NcorpiON to simulate the close approach of April 2029 of
asteroid 99942 Apophis.

* Corresponding author at: Department of Physics and Astronomy, University of Rochester, 227 Hutchison Hall, Rochester, 14627, NY, United States of

America.
E-mail address: jcouturi@ur.rochester.edu (J. Couturier).
1 https://ncorpion.com
2 https://github.com/Jeremycouturier/NcorpiON

https://doi.org/10.1016/j.newast.2024.102313

Received 1 February 2024; Received in revised form 6 August 2024; Accepted 19 September 2024

Available online 27 September 2024
1384-1076/© 2024 Published by Elsevier B.V.

https://www.elsevier.com/locate/newast
https://www.elsevier.com/locate/newast
https://ncorpion.com
https://github.com/Jeremycouturier/NcorpiON
mailto:jcouturi@ur.rochester.edu
https://ncorpion.com
https://github.com/Jeremycouturier/NcorpiON
https://doi.org/10.1016/j.newast.2024.102313
https://doi.org/10.1016/j.newast.2024.102313

J. Couturier et al.

NcorpiON comes with four different built-in modules of mutual
interactions management, one of which uses the efficient fast multipole
method-based falcON algorithm (Dehnen, 2002, 2014). Each of the four
modules is able both to detect collisions and to compute self gravity.
Overall, NcorpiON was developed with time-efficiency in mind, and its
running time is almost linear in the total number N of moonlets, which
allows for more realistic disks to be simulated. Low-performance CPUs
can be used to run NcorpiON.

In Section 2, we present the structure of the code of NcorpiON. In
Section 3, the challenging task of time-efficiently considering
moonlet—moonlet interactions is carried out and the four built-in mod-
ules of mutual interactions management are presented. In Section 4, we
go over the speed performances of NcorpiON’s four built-in modules
of mutual interactions management. Finally, Section 5 deals with the
resolution of collisions, where we present, among other things, the
fragmentation model of NcorpiON. For convenience to the reader, we
gather in Table A.2 of Appendix A the notations used throughout the
article. Section 3 only concerns mutual interactions between the moon-
lets. Other aspects of orbital dynamics, that are not moonlet—moonlet
interactions, such as interactions with the equatorial bulge, are pushed
in Appendix B in order to prevent the paper from being too long.

Hereafter, © denotes the center of mass of the system, and in a
general fashion, the mass of the Earth and of the Sun are denoted
by Mg and M, respectively. Let N be the total number of moonlets
orbiting the Earth and for 1 < j < N, m; is the mass of the jt moonlet.
The inertial reference frame is (O, i, j, k), while the reference frame
attached to the rotation of the Earth is (O, I,J, K), with k = K. The
transformation from one to another is done through application of the
rotation matrix Q, which is the sideral rotation of the Earth. All vectors
and tensors of this work are bolded, whereas their norms, as well as
scalar quantities in general, are unbolded.

2. Structure of NcorpiON and how to actually run a simulation

The website of Ncorpi©ON features a full documentation® as well as a
section where the structure of the code is discussed.* As such, it can be
considered as an integral part of this work and we will refrain here from
giving too much details. Instead, we stay succinct and the interested
reader is invited to visit Ncorpi©ON’s website.

Moonlets are stored in an array of structures that holds their carte-
sian coordinates. In order to increase cache efficiency, the moonlet
structure is defined such that its size is 64 bytes, which is generally a
submultiple of a cache line. When arrays of dynamical size are needed,
NcorpiON makes use of a hand-made unrolled linked list, that we call
chain. Unrolled linked lists are linked lists®> where more than one value
is stored per node. Storing many values per node reduces the need for
pointer dereferences and increases the locality of the storage, making
unrolled linked lists significantly faster than regular linked lists.

When the mesh O(N) algorithm is used to detect collisions and
compute mutual gravity, chains are used to store the ids (in the moonlet
array) of the moonlets in the different cells of the hash table. When
either falcON O(N) fast multipole method or the standard O(N In N)
tree code is used to detect collisions and compute mutual gravity, then
chains are used to store the moonlets’ ids in each cell of the octree.

The different structures used to build and manipulate the octrees
are explained in the website. After the tree is built with the general
construction based on pointers, it is translated into a flattree where
the cells are stored in a regular array. This procedure allows for a
significant CPU time to be saved (Section 3.4.6).

3 https://ncorpion.com/#setup

4 https://ncorpion.com/#structure

5 A linear data structure where each node holds a value and a pointer
towards the next value.

New Astronomy 114 (2025) 102313

Among all existing N-body softwares, the one closest to NcorpiON
is REBOUND, although REBOUND does not implement falcON multi-
pole algorithm for mutual gravity computation and does not handle
fragmentations. REBOUND can however be used in parallel. GyrfalcON
on NEMO is also similar to NcorpiON since it uses falcON algorithm
for mutual gravity computation, but it is galaxy oriented and does not
handle collisions.

The installation of NcorpiON from the github repository is straight-
forward.® The initial conditions of the simulation, the different physical
quantities, and the choice of which module is to be used for mutual
interactions, is decided by the user in the parameter file of Ncorpi©ON.
Then, the simulation is run and an animation created from the com-
mand line. The complete documentation is provided both in the website
and the github repository.

The simulations can feature a central mass or not. If present, the
central mass plays a particular role in the sense that it can have an
equatorial bulge and other bodies can raise tides on it. The user decides
in the parameter file if a central mass should be present or if all the
bodies play the same role. The user also has the possibility of perturbing
the system with a distant star, for example a star around which the
central body may be orbiting if it is a planet, or a binary star if the
central body is a star.

3. Mutual interactions between the moonlets

We consider in this section mutual interactions between the moon-
lets. The general aspects of orbital dynamics, those not related to
moonlet—moonlet mutual interactions, are treated in Appendix B. As
long as mutual interactions between the moonlets are disregarded, the
simulation runs effectively in O(N) time. However, the moonlets can
interact through collisions and mutual gravity, and managing these
interactions in a naive way results in a very slow integrator. Hereafter,
a mutual interaction denotes either a collision or a gravitational mutual
interaction. We review in this section the four modules implemented in
NcorpiON that can deal with mutual interactions between the moonlets,
namely

+ O(N?) brute-force method.

* O(N In N) standard tree code.

* O(N) falcON fast multipole method.
* O(N) mesh-grid algorithm.

Each of the four modules is able to treat both the detection of collision
and the computation of self gravity (NcorpiON adapts Dehnen’s falcON
algorithm so it can also detect collisions). The module chosen for a
simulation is used both for collision search and gravity computation.

3.1. Detecting a collision between a pair of moonlet

Before delving into the presentation of the four mutual interaction
modules, we describe how NcorpiON decides if two given moonlets will
collide in the upcoming timestep. Note that apart from the brute-force
method, these modules rarely treat mutual interactions in a pair-wise
way.

Given two moonlets with positions r; and r, and masses m; and m,,
all four modules rely on the following procedure to determine if the
moonlets will be colliding during the upcoming timestep.

Let v, and v, be the velocities of the moonlets and R; and R, their
radii. Let us denote Av = v, — v, and Ar = r| — r,. Approximating
the trajectories by straight lines, we decide according to the following
procedure if the moonlets will collide during the upcoming timestep.
We first compute the discriminant

A= (4r - Av) + AP [(R1 +R2)2—Ar2]. o)

¢ The installation should go seamlessly under Linux and MacOS systems,
but we did not adapt NcorpiON for Windows.

https://ncorpion.com
https://ncorpion.com/#structure
https://ncorpion.com/#setup
https://ncorpion.com/#structure
https://teuben.github.io/nemo/man_html/gyrfalcON.1.html
https://github.com/Jeremycouturier/NcorpiON
https://github.com/Jeremycouturier/NcorpiON
https://github.com/Jeremycouturier/NcorpiON
https://github.com/Jeremycouturier/NcorpiON
https://github.com/Jeremycouturier/NcorpiON
https://github.com/Jeremycouturier/NcorpiON
https://github.com/Jeremycouturier/NcorpiON
https://github.com/Jeremycouturier/NcorpiON
https://github.com/Jeremycouturier/NcorpiON
https://github.com/Jeremycouturier/NcorpiON
https://github.com/Jeremycouturier/NcorpiON
https://github.com/Jeremycouturier/NcorpiON
https://github.com/Jeremycouturier/NcorpiON
https://github.com/Jeremycouturier/NcorpiON
https://github.com/Jeremycouturier/NcorpiON
https://github.com/Jeremycouturier/NcorpiON

J. Couturier et al.

New Astronomy 114 (2025) 102313

Fig. 1. Schematic representation of a two-dimensional y-mesh around the Earth. The neighborhood of the red moonlet, defined as the cell containing it plus all the adjacent cells,

is shown with a red square.

Then, the time A until the collision is given by

Ar-Av+ /4
B Av? '
A collision will occur between the moonlets in the upcoming timestep
if, and only if, At € R and 0 < At < dt, where dt is the size of the
timestep. If that is the case, the collision is resolved using results from
Section 5.

At = 2

3.2. Brute-force O(N?) algorithm

The most straightforward way of treating mutual interactions is
through a brute-force algorithm where all N(N —1)/2 pairs of moonlets
are considered. At each timestep, the mutual gravity between all pairs
is computed, and the algorithm decides if a collision will occur between
the two considered moonlets in the upcoming timestep. However,
this naive procedure yields a O(N?) time complexity, limiting the
total number of moonlets to a few thousands at best on a single-core
implementation (e.g. 1000 < N <2700 in Salmon and Canup, 2012).

3.3. The mesh O(N) algorithm

Khuller and Matias (1995) described in 1995 a O(N) algorithm
based on a mesh grid to find the closest pair in a set of points in the
plane. Their algorithm is not completely straightforward to implement
and only allows for the closest pair of moonlets to be identified. Here,
we describe a mesh-based three-dimensional simplified version of their
algorithm able to detect collisions in O(N) time.

For a real number y > 0, we build a y-mesh. At each timestep,
we only look for collisions between moonlets that are in each other
neighborhood, and we only compute the gravitational interactions
between moonlets in each other neighborhood. In Fig. 1, we provide a
schema of a y-mesh and the definition of neighborhood. If y is chosen

as a function of N and such that, on average, each moonlet has O(1)
moonlets in its neighborhood, then the algorithm runs in O(N) time.

In practice in NcorpiON, when the mesh algorithm is used to
treat mutual interactions, moonlets are put in the mesh-grid one after
the other, and moonlets already populating their neighborhood are
identified. A hash table of chains is used to remember which moonlets
occupy which cells of the grid. This procedure ensures that pairs are
only treated once.

In order to choose the mesh-size y, let us assume that initially, all
the moonlets are located in a disk of constant aspect ratio A/r, at a
radius r < R, Then they occupy a volume

4 3 . 4 3 ' h2/r2
V= gﬂRmax sing = gﬂRmaX m, (3)

where tang = h/r. In order for each moonlet to have, on average, x
moonlets in its neighborhood, the mesh size must verify 3r)* <xV/N,
that is

1/3 n2 o\

y < (4”_") L Ripax- 4
81N 1+ n2/r?

With h/r = 0.05, Ry, = 10Rg, N = 105 and x = 8, this gives
y = 0.08526Rg, or y = 543.2 km. If the N moonlets have, let us say, a
total mass that of the Moon, then their average radius is R = R¢ /N 173,
For N = 10° this gives R = 37.4 km. The condition that the moonlets
are smaller than y is 2R < y. Choosing x = 8 and R ,x = 10Rg, this
gives

R
h 162 < «

tan — >
r zx \ R

3

) ~ 0.0001307, 5)
max
that is, h/r > 1.3 10~*. Choosing for y the critical value given by Eq. (4),
and for h/r a value much larger than that predicted by Eq. (5) ensures
that most of the moonlets are smaller than the mesh-size.

In the parameter file of NcorpiON, the user indicates the desired
number x of neighbors for the simulation and Eq. (4) is used at the first

J. Couturier et al.

New Astronomy 114 (2025) 102313

Fig. 2. Left : Schematic representation of a quadtree around the Earth built with s = 5. The root cell is shown with a thick black square, whereas its descendants are shown with
colored lines whose thicknesses decrease with their depth into the tree. The children of the root cell are blue, the grandchildren are red, etc ... Right : A zoom-in image showing

the South-East child of the root cell, its maximal radius r,,,

and the maximal radii of its descendants. Cells with one moonlet have a zero maximal radius, and those are not

shown. For clarity, the maximal circles are shown with the color and thickness of their corresponding cell, and diagonal crosses show their centers 3.

time-step to estimate a suitable value of the mesh-size y. Then, at each
time-step, the value of y is updated according to the expected number
x' of neighbors computed at the previous timestep, in order to match
the user’s requirement. More precisely, if y’ denotes the mesh-size at
the previous timestep, then the new value of y for the current timestep
is given by

The largest moonlets of the simulation can sometimes be larger
than y. When this happens, the corresponding moonlet is not put in
the hash table but instead, mutual interactions between that moonlet
and any other moonlet are treated. The user indicates in the parameter
file of NcorpiON the number of cells along each axis’” and the minimal
sidelength of the total mesh-grid, which is translated into a minimal
value for the mesh-size y.

The mesh algorithm disregards gravitational interactions between
moonlets not in each other neighborhood, and while it is very efficient
in detecting collisions, it only poorly approximates mutual gravity.
In order to improve the mesh algorithm, NcorpiON also computes
mutual gravity between any moonlets and the three largest moonlets.
Unless the three largest moonlets account for the majority of the total
moonlet mass, the mesh algorithm is poorly adapted to mutual gravity
computation.

3.4. Tree-based algorithms

We now present the two remaining modules of NcorpiON that
can search for collisions or compute mutual gravity using a three-
dimensional tree, or octree. Contrary to the mesh algorithm, these
algorithms consider long-range mutual interactions as well. The first al-
gorithm, hereafter referred as standard tree code, was published in 1986
by Barnes and Hut (1986) for mutual gravity computation, and adapted

7 Care must be taken to ensure that the hash table fits into the RAM.

in 2012 by Rein and Liu (2012) for collision detection in REBOUND.
The second algorithm, called FalcON, was published in 2002 by Dehnen
(2002) for mutual gravity computation and we adapted it to collision
search as well.

Both the standard tree code and falcON use a fast multipole Taylor
expansion for mutual gravity computation, and take advantage of
the fact that collisions are short-range for collision search. FalcON is
significantly faster than the standard tree code at both mutual grav-
ity computation (for the same precision) and collision detection (see
Fig. 6).

3.4.1. Tree building

Both algorithms use an octree, whose building procedure is not
detailed here, but described in Barnes and Hut (1986) and schemat-
ically represented in Fig. 2. Cells containing at most s moonlets are
not divided into children cells (s = 1 in Barnes and Hut (1986)). As
the same tree is used for both collision search and mutual gravity
computation, it is possible to build it only once per timestep to reduce
the computational effort.®

Hereafter, we adopt the naming convention of Dehnen (2002) where
a node, or cell, is a cubic subdivision of the space, a child refers to a
direct subnode of a node, and a descendant refers to any subcell of a
cell. A leaf is a childless node and we abusively refer to the moonlets
contained by a leaf as children nodes of that leaf. On the left panel of
Fig. 2, we provide a schematic representation of a two-dimensional tree
(quadtree) around the Earth with s = 5.

8 The tree-based algorithms have a different optimal value for s according
to whether they are used to detect collisions or to compute mutual gravity. It
could be interesting to build distinct trees with a different s for collisions and
gravity. Time is lost by building two trees but also saved by using the optimal
s. We did not investigate what was best.

J. Couturier et al.

New Astronomy 114 (2025) 102313

Fig. 3. Multipole expansion between two interacting cells A and B.

3.4.2. Tree climbing

The tree climbing procedure consists in computing several quanti-
ties for all cells of the tree, recursively from the children nodes. The
tree climbing procedure differs slightly for collision search or mutual
gravity computation.

Collision search
When searching for collisions, we define the center 5, of cell A4 as
the average position of the N, children nodes it contains

S
5, = ol @)
child a of A *" A

and its maximal and critical radii recursively as

r = max r +15,—541), (8)
max,A child a of A(max,a | a A)

and

FeritaA =T + max Ferita — T . ©
crit,A max,A child @ of A (crit,a max,a)

If a child node a is a moonlet (that is, if A is a leaf), then 5, = r,
is the moonlet’s position, ry.c, = 0 and rq, = R, + dtv,, where
R, is the moonlet’s radius, d¢ the timestep (common to all moonlets
in Ncorpi®ON), and v, the moonlet’s scalar velocity. Starting from the
leaf cells, we go up the tree and use Egs. (7), (8) and (9) to compute
recursively from the children nodes the center 5, the maximal radius
rmax and the critical radius r., of each cell. On the right panel of Fig. 2,
we show the centers and maximal radii of the South-East child of the
root cell and of its descendants.

Mutual gravity computation
When computing mutual gravity, we define the expansion center
s, of cell A of mass M, as the center of mass of the children nodes it
contains
1

Sy = M_A Masa‘ (10)

child a of A
The maximal radius rp,y 4 is defined recursively in the same way as in
collision search

Tmax, A = (rmax,a + |sa - sA|) . an

max
child a of A

However, the critical radius is defined differently as

Ferit,A = 'max, A [0(M 4), 12)

where the opening angle 8(M ,) is given by Eq. (13) of Dehnen (2002).
If a child node a is a moonlet (that is, if A is a leaf), then s, = r, is the
moonlet’s position and rp,, , = 0. Starting from the leaf cells, we go up
the tree and use Egs. (10), (11) and (12) to compute recursively from
the children nodes the expansion center s, the maximal radius r,,, and
the critical radius r;; of each cell.

For both collision search and mutual gravity computation, if the
distance from the center (or expansion center) of a cell to its farthest
corner is smaller than r,,,, then r,. is replaced by this distance. Two
cells are said to be well-separated if the distance between their centers
(or expansion centers) is larger than the sum of their critical radii, that
is, if

Ferit, A + Ferit,B < |§A - §B| . 13)

The same definition applies with s instead of 5 for mutual gravity
computation. When treating mutual gravity, the multipole moments
M™ are also computed for all cells recursively from the children cells
during the tree climbing. More details on doing so are provided in
Appendix C.

How the octree can be used to look for collisions is trivial. Given
the definition of r.y, it is straightforward to verify that moonlets
of cell A will not collide with moonlets of cell B in the upcoming
timestep if A and B are well-separated. However, how to compute
mutual gravitational interactions with the octree is not so obvious.

3.4.3. Multipole expansion

The computation of mutual gravity with the octree relies on multi-
pole expansions. The mathematical framework in spherical coordinates
can be found in Cheng et al. (1999), whereas Warren and Salmon
(1995) provide it in cartesian coordinates. Ncorpi©ON operates in carte-
sian coordinates and we closely follow Warren and Salmon (1995).
However, their work does not provide a detailed derivation of Eq. (25),
which is core to Dehnen (2002) and to Ncorpi©ON, and we derive here
the required mathematical framework.

In Fig. 3, let us say that we want to compute the acceleration of
moonlets of A due to their gravitational interaction with moonlets
of B. Since the critical circles do not intersect, these two cells are

J. Couturier et al.

well-separated. From the point of view of moonlets of A, moonlets
of B can thus be seen as a whole, and at lowest order, it is as if
they were all reunited at their center of mass® sz. At higher order,
the mass distribution inside cell B can be taken into account through
the multipole moments M of the cell (Eq. (20)) to reach a better
precision. The gravitational potential at location x in cell A due to the
gravity of cell B is given by'°

B(x) =Dy glx = x,), (14
ieB

where y; = Gm;, m; and x; are the mass and position of the /" moonlet

of B, and g(x) = 1/x is the Green function of the Laplace operator. As

suggested by Fig. 3, we write

x—x;=A+R+sp—x;, (15)

where R = 54 — sz and A = x — 54, and we Taylor expand the Green
function g(x — x;) around the cell separation R up to a certain order p.

gx - x)-Z(VR0 (x, - 55— 4)",)

where a remainder of order (ryay g +rmax g)”+ /RP*! has been discarded.
In this expression, the n" order tensor V"g(R) is the nth gradient of
1/R defined recursively as

vOg(R)=g(R) and

%(V(Vl—l)g(R))ilvi2v"~’in—l .

i

(V(n)g(R))’AlJZsms"n: 17)

with (i},i,,...,i,) € {1,2,3}" and R = (R}, R,,R;). The quantity
(x;—sp— A)(") is the n-fold outer product of the vector x; — sp — A
with itself. The inner and outer product of two tensors are defined
respectively as

) (n=k) \ 10120l i seesiko oo esdpek Aol 1o+ -sinekc
(1 01y™)] T (1)
1<jysendn—k <3
and
PR IR o)
(T(lk)®T(2n k)) =Tl[]"""kT21k“"""”. (19)

multipole moment of cell B as the nt? order tensor

M(l;')(sB) = Z i (x; = sB)(n), (20)

i€B

then Egs. (14) and (16) yield

Loy
¢(x)=2%

The idea is to expand M (")(s g +4) as to make appear the multipole
moments M (")(s). However, since s and 4 do not commute (s; ® 4 #
AQ® sp in general), such expansion is not given by Newton’s binomial.
We can however use the symmetry of tensor V" g(R) to get around
this difficulty. We say that a tensor T is symmetrical if, for any
permutation ¢ of {1,2,...,n}, we have

If we define the nt?

V?g(R)© MW (s, + A). (21)

Titeenin = Tiottys-siom 22)

Due to Schwarz rule, V?”g(R) is symmetrical and we have (this is easily
verified from Egs. (18) and (19))

VWg(R)© M (s + 4) =

V?e(R) @ <20<—1>’" <;’1>A(”’> oM 3;‘m>(s3)> ,

(23)

9 This is the approximation made by Barnes and Hut (1986) in their original
description of the standard tree code, corresponding to p =1 in Eq. (25).

10 We use here the sign convention ¥ = V¢(x), in order to have vy, cmb =
C™ in Eq. (25).

New Astronomy 114 (2025) 102313

although Eq. (23) cannot be simplified by V" g(R). Using Eq. (23) and
the equality

(n) (m) (n—m) \ _ (n) (m) (n—m)
T, o(T2 T,)_Tl oT,” 0T, 24)

for any symmetrical tensors T' (l"), T;m) and Tg"_m), Eq. (14) can be
written (Warren and Salmon, 1995)

P
$(x) = Z

mO

Cm(sy) = Z ¢l

A(m) o} C(m)(SA)
(25)
V(n+m) (R) o} M(")(SB)

The tensors C©, D and C® are respectively the gravitational poten-
tial, the acceleration and the tidal tensor at s, due to the gravity of
cell B. More generally, the C™ are the interaction tensors due to the
gravity of cell B on the center of mass s, of cell A.

In the standard tree code (Section 3.4.4), instead of computing
interactions between cells, we compute interactions between a cell B
and a moonlet well-separated'’ from B at location x. In that case,
instead of R = s, — s, we take R = x — sz and we only compute
C" in Eq. (25), since we are only interested in the acceleration of the
moonlet.

In falcON, once the C™ due to interactions between cells of the tree
have been accumulated by the tree walk (described in Section 3.4.5),
they are passed down and accumulated by the descendants until reach-
ing the moonlets. Since the children are not located at the expansion
center s, of their parent, their parent’s C™ are translated to their own
expansion center s; (or position if the child is a moonlet). Using the
equality V, Cm=V(s0) = C™(sy), this is done via a p order Taylor
expansion'?

p—m
1
C('")(sl) - z mV(s:;)c(m)(so) 1o} (51 _ SO)(")
o 26)
1 (n)
= Z mC(’"“’)(so)@ (s1—50)"-
n=0 """

This tree descent is performed from the root cell. Once a cell has
accumulated the C of its parent, it transmits its own C™ to its
children using Eq. (26), until the leaves have received the C™ from
all of their ancestors. Then the accelerations C'" of the moonlets are
computed from the C™ of their parent leaf using Eq. (26) (Dehnen,
2002, Sect. 3.2.2).

In the parameter file of NcorpiON, the user chooses the desired
expansion order p used for the multipole expansion in falcON or in the
standard tree code (if the user wants to use a tree-based method for
mutual interactions). In the original description of falcON by Dehnen
(2002), p was three, whereas p was one in the original description of
the standard tree code by Barnes and Hut (1986). NcorpiON allows
expansion orders up to p = 8. Since the expansion center is the center of
mass, the dipole M) vanishes by construction. Therefore, orders p = 1
and p = 2 are identical for the standard tree code, since only C(" is ever
computed in this case. However, order p = 1 and p = 2 are different for
FalcON, and the precision increases as p increases (see Fig. 4).

In practice in NcorpiON, when using falcON, we treat the interac-
tion of cell B on cell A at the same time as we treat the interaction of
cell A on cell B. The advantages of doing so are two-folds. First, we can
take advantage of the relations

C(P) — (_l)pMBC(p)

A-B’
27
1 1
C‘l;:,i 1 MpCYTL,

to speed up the algorithm. Second, doing so ensures that the total
momentum is preserved up to machine precision, since Newton’s third

11 The well-separation in that case is defined as |x — sg| > reg 5-
12 There is a sign error in Eq. (8) of Dehnen (2002), where s, —s, is written
instead of s, — s,.

J. Couturier et al.

New Astronomy 114 (2025) 102313

104
Qmin =0.25
103
=
O 10?
=
=
e
=
L2 .
S 104
. — p=1 _
@ P Oin = 0.5
= p=2 min
(2]}
£ 103 — p=3
Q0 — p=4
o
o p=5
g 102 — p=6
c — p=7
el — p=8
E N
Q 100
8 Qmin = 075
B a0
o 10
102
191 ~10 = -8 =7 BT, =G -5 -4 =3 -2 = 0
0 10 10 10 10 10 10 10 10 10 10

Relative errors on gravity calculation with FalcON for various expansion orders and opening angles

Fig. 4. Distribution of the relative errors of the moonlets’ accelerations with our implementation of falcON. These distributions were computed with N = 10° moonlets in a disk
whose characteristics are given in the text. The accelerations only consider the disk’s self gravity, not the interaction with a central mass. The relative errors are similar with the

standard tree code.

law is verified. Therefore, FalcON preserves the total momentum while
the standard tree code does not. A speed up is also achieved by noticing
that the highest order multipole moment M® only affects C¥ in
Eq. (25). Furthermore, in Eq. (26), C™(s,) is only affected by C¥)(s,)
for k > m. Since we are only interested in computing the accelerations
of the moonlets, C¥) never has to be computed for any cell, and as a
consequence, the highest order multipole moment M” is never used
and does not have to be computed when climbing the tree.

Another significant speed up comes from the fact that all the
manipulated tensors are symmetrical in the sense of Eq. (22). In
three-dimensional space, a symmetrical tensor of order »n only has
(n+1)(n+2)/2 independent components out of the possible 3". In
NcorpiON, order n tensors are therefore stored in an array of size
(n+1)(n+2) /2, and to compute them, we only compute that many dis-
tinct quantities. Similarly, when computing the inner product
T(I") oT (2"7"), the total number of multiplications can be reduced from
3" down to only % (k+1)(k+2)(n—k+1)(n—k +2) using the symme-
try of the tensors.

The choice of the expansion order p is an obvious parameter affect-
ing the precision of the expansion. Another parameter is how large the
critical radius r;; of a cell is, determined by Eq. (12). In the parameter
file of NcorpiON, the user chooses the value of 60;,, corresponding
to the ratio rp.c/reic Of the root cell. Then, this same ratio for the
descendants of the root cell is determined by Eq. (13) of Dehnen (2002).
Sensible values are 0.2 < 6,,;, < 0.8, and highest precisions are achieved
with small values. In the standard tree code, a common practice is to
consider the same 0 for all cells, but here, we consider a 6 dependent on
the cell’s mass for both falcON and the standard tree code as it speeds
up the code for the same precision.

In Fig. 4, we plot the distribution of the relative error
a. —a.
] Zhid —, (28)
~ ZlgksN ag

where a; is the acceleration of moonlet j computed with our imple-
mentation of falcON, whereas a; is its true acceleration, computed in a
brute-force way. In this figure, the opening angle 6,;, € {0.25,0.5,0.75}
and the expansion order p goes from 1 to 8. For the distributions in
Fig. 4, we considered N = 10° bodies in a disk with semi-major axes
2Rg < a < 32Rg, eccentricities 0 < e < 0.2 and inclinations 0 < i < 20°.
All 10 bodies had random masses for a total mass 0.01 Mg,. The angles
M, w, 2 were chosen at random in [0, 2z].

The accelerations considered in Eq. (28) are only between moonlets
of the disk, not between the moonlets and the Earth. Because the Earth
is out of the octree and the acceleration with it is computed directly and
without error, the actual relative errors are two orders of magnitude
less than what is shown in Fig. 4, which corresponds to a disk without a
central mass (for example a galaxy, or a collection of nodes representing
a single viscoelastic body).

While Fig. 4 associates a precision with some choices of the pair
(P.Omin), it does not indicates the corresponding running time or the
optimal subdivision threshold s and cannot be used in itself by a user
of NcorpiON to choose the right set of parameters (p, s, 6,) for falcON.
In Appendix D, we solve this issue by providing a complete overview of
the performances (running time and precision) of falcON depending on
the set of parameters (p, s, 6,). The user can use Table D.3 to choose
the best parameters depending on precision needs.

J. Couturier et al.

procedure StanparDTREE(moonlet a, cell B)
N, < number of moonlets in cell B
if Ny < Neppre then
Treat the interaction between moonlet a and cell B brute-
forcely
else if a is well-separated from B then
Accumulate CV of moonlet a or Do nothing.
else if N, < Np o5 OF B is a leaf then
Treat the interaction between moonlet a and cell B brute-
forcely
else
for all child node » of B do
STANDARDTREE(a, b)

3.4.4. Standard tree code

We provide with algorithm StandardTree our implementation of the
standard tree code first described by Barnes and Hut (1986). When
an instruction differs according to whether the algorithm is used for
mutual gravity computation of collision search, the instruction relative
to gravity is given first in regular font, followed by the instruction
relative to collision search in italic font. To treat the interactions
between all the moonlets, the procedure StandardTree is called with
argument (moonlet k, root cell) N times in a for loop going over all
the moonlets once. Each call to the function is resolved in time O(In N),
hence the overall O(N In N) time complexity. The thresholds N, pre
and N, 0 are parameters chosen by the user. Possible values are
discussed in Section 4.

3.4.5. FalcON: An efficient tree walk

We give with the algorithm TreeWalk the tree walk procedure of
falcON algorithm used after the tree climbing and before the tree
descent. When a line has both regular font and italic font, only one
of the two instructions is performed. The instruction in regular font
is performed if falcON is used for gravity computation, whereas the
instruction in italic font is applied if it is used for collision detection.
Once the tree climbing is done, the tree walk procedure is called once
with argument (root cell, root cell). When falcON is used for collision
detection, the algorithm terminates after the tree walk. When it is
used for mutual gravity computation, a tree descent stage, explained
is Section 3.4.3, is performed after the tree walk. The thresholds N,
Neepre @nd Neepoq are indicated by the user in the parameter file of
NcorpiON. Possible values are discussed in Appendix D.

In practice in NcorpiON, the functions TreeWalk and StandardTree
are not coded recursively. Instead, we store in a stack the cell-cell inter-
actions yet to be performed (cell-body interactions for the standard tree
code) and these functions are more efficiently implemented iteratively.

3.4.6. Peano-Hilbert order and cache efficiency

The practical construction of a tree generally involves a structure
containing relevant informations for the current cell (number of chil-
dren, mass, multipole moments, etc ---), and pointers towards the
children nodes, that can be either NULL or contain the address in
memory of a child. Such a construction is easy to implement but yields
poor memory locality (children have no reason to be next to each
other in memory) and traveling in the tree requires multiple pointer
dereferences. These issues are responsible for many cache misses and
the processor wastes a lot of clock cycles waiting for data in memory.

A much better implementation can be achieved by storing the tree
in a regular array, preferably in such a way that children are contiguous
in memory, and such that cells close in space are likely to be close in
memory, for cache efficiency. To this aim, we need to order the cells of
the tree. Some authors (e.g Malhotra and Biros, 2015) use the Morton

New Astronomy 114 (2025) 102313

Fig. 5. Hilbert order of all the cells of the tree of Fig. 2. The Hilbert order of a cell
is written in its middle. Cells empty of moonlet do not exist and are not assigned an
order. In practice, this tree would be stored in an array indexed from 0 to 100.

order, or Z-order. The main issue with this order is that cells close by
Morton order can be far away in 3D space. Instead, and like Dehnen’s
implementation of falcON,'® we use the space filling curve discovered
by David Hilbert. At a given generation (or level) in the tree, cells
are ordered according to a three-dimensional version of Hilbert’s 1891
space filling curve, skipping non-existing cells. Unlike Morton order,
Hilbert order has the nice property that cells close by Hilbert order are
always close in 3D space, although the converse is false. For illustration
purposes, we show this order in two dimensions in Fig. 5 for the tree
presented in Fig. 2. For two cells A and B, the order that we define
verifies the following properties

« If level(A) > level(B) then order(A) > order(B).
+ If order(A) > order(B) then for all child a of A and b of B,
order(a) > order(b).

However, when building the tree, its final structure as well as the
number of cells it contains are still unknown and it is not possible
to build the tree in a regular array. Therefore, we use the general
representation based on pointers to build the tree. Then, the final tree
is copied in an array indexed by Hilbert order, hereafter called the
flat tree, and the tree is freed. FalcON algorithm (climbing, walk and
descent) and the standard tree code (climbing and standard tree) are
performed on the flat tree.

Instead of putting the moonlets in the tree in a random order, an
impressive speed-up for the tree building can be achieved by putting
the moonlets in the Hilbert order of the previous timestep. We define
the Hilbert order of a moonlet as the Hilbert order of its parent leaf.
When the moonlets are put in the tree in the Hilbert order of the
previous timestep, a spacial coherence is maintained during the tree
construction, increasing the probability that the data needed by the
processor are already loaded in the cache, and reducing cache misses.
In Table 1, we give the time taken by our CPUP-® to build the tree when
the moonlets are added in the tree in random order and when they are

13 From personal communications.

J. Couturier et al.

New Astronomy 114 (2025) 102313

procedure TrReeWark(cell A, cell B)
(N,, N,) < number of moonlets in cells A and B
if A = B then
if N, < N or A is a leaf then
Treat the interaction of cell A with itself brute-forcely.
else
for all pairs (a, b) of children of A do
TrReEWALK(a, b)
else
if NyN, < Neepre then

Treat the interaction between cell A and cell B brute-forcely.

else if A and B are well-separated then

For 1 < n < p, accumulate C™ for cells A and B (Eq. (25)) or Do nothing.

else if N,N, < Nccpost OF both A and B are leaves then

Treat the interaction between cell A and cell B brute-forcely.

else if r.; 4 > rege p OF B is a leaf then
for all child node a of A do
TrReEWALK(a, B)
else
for all child node b of B do
TrReeEWALK(A, b)

> Called once on (root, root)

> Self interaction

> Compute gravity or search collisions for all pairs
> Up to 36 such pairs

> Interaction between different cells

> No collision possible

> Subdividing A

> Subdividing B

Table 1

Time (in seconds) needed to build the tree as a function of the number of moonlets N.
When moonlets are added in random order, the tree building takes up to a factor 3.5
longer than when they are added in the Hilbert order of the previous timestep. The
subdivision threshold is s = 26 and the moonlets are distributed between r = 2.9Rg
and r = 12Rg,.

N 2|l) 2|4 218 222 226
Random order 75 1076 19 10~ 0.049 1.5 45
Hilbert order 28 107 7.1 1074 0.033 0.65 13
Speed-up factor 2.7 2.7 1.5 2.3 3.5

added in the Hilbert order of the previous timestep. The procedure to
build the tree is exactly the same in both cases, yet, cache-efficiency
makes the building procedure two to three times faster.

In their implementation of the standard tree code in REBOUND
(Rein and Liu, 2012), the authors do not rebuild the tree from scratch at
each timestep, but instead update it by locating moonlets that left their
parent leaf. In NcorpiON, we prefer to build the tree from scratch at
each timestep, but subsequent builds are two to three times faster than
the first build thanks to Hilbert order. The authors of REBOUND do not
mention the speed-up they achieved with their update procedure, and
it is unknown which method is best.

4. Numerical performances of NcorpiON
4.1. Numerical integration

In the parameter file of NcorpiON, the user chooses how moonlets
interact (through collisions, mutual gravity, both of them or none of
them). In case of interactions, the user also chooses how interactions
should be treated (either brute-forcely, with the mesh algorithm, with
falcON, or with the standard tree code). If the mesh-algorithm is
used, then only mutual gravity with the neighboring moonlets and
with the three largest moonlets are taken into account. All other long
range gravitational interactions between moonlets are discarded. This
is generally a poor approximation, unless the three largest moonlets
account for the majority of the total moonlet mass. If either falcON
or the standard tree code is used, then long range mutual gravity is
considered, with a precision depending on p and 6., (See Fig. 4 and
Table D.3).

We use a Leapfrog integrator to run the numerical simulations.
Depending on the method chosen for mutual interaction treatment,

NcorpiON uses either a SABA, (half drift + kick + half drift) or
SBAB, (hdlf kick + drift + half kick) symplectic integrator'* (Laskar
and Robutel, 2001). When outputs do not occur at every timestep (this
is generally the case for a long simulation), time is saved by combining
the last step of a timestep with the first step of the next timestep, since
they are identical. For example, the SABA, integrator takes in that case
the form half drift + kick + drift + kick + drift + ---, until an output has
to occur. When an output occurs, the last drift is undone by half (on a
copy of the simulation, as to not interfere with it) and the simulation’s
state is written to file. Similar considerations are valid for the SBAB,
integrator. Collisions are searched and resolved during the drift phase,
whereas mutual gravity is computed during the kick phase.

As with any other integrator, the Leapfrog only approximates the
equations of motions. The main consequence of the approximation
is a steady precession of the periapsis of the orbits over time. We
thoroughly analyze the Leapfrog integrator in an analytical manner in
Appendix E.

4.2. Performances

In order to test the performances of NcorpiON, we ran numerical
simulations with both collisions and mutual gravity, for different values
of the number of moonlets N. In order for N to be constant during
a simulation, we resolved the collisions elastically. We measured the
time taken by our CPU'" to run one timestep (averaged over the first
eight timesteps) with each of the four mutual interaction management
modules (brute-force, falcON, standard tree code and mesh algorithm),
each with the exact same initial conditions for a given N. We also ran
the same simulations with Rein and Liu’s REBOUND software in order
to compare NcorpiON with REBOUND. Only the brute-force method
and the standard tree code (up to p = 3) are implemented in REBOUND
and we only tested these modules for REBOUND. In Fig. 6, we show the
results of our tests for 27 < N < 2%,

The runs with a tree-based method (falcON or the standard tree
code) were performed with 6,;, = 0.5 (¢ = 0.5 for REBOUND, which
uses a constant #). With a central mass 100 times more massive than
the rest of the moonlets, this leads to a relative error in the acceleration

14 Whichever is faster for the given mutual interaction management method.
15 Clock : ~ 4.5 GHz. Cache L,, L,, L, : 80 KB, 1.25 MB, 24 MB. RAM : 32
GB DDRS5 4800 MT/s.

J. Couturier et al.

1074

10—4.5

1075

CPU time per timestep and per moonlet (seconds)

10*727

213

28 212 214 5is

New Astronomy 114 (2025) 102313

NcorpiON, brute-force
REBOUND, brute-force
REBOUND, standard tree (p=3)
NcorpiON, standard tree (p = 3)
Ncorpi®©N, falcON (p = 3)
NcorpioN, falcON (p =6)
Ncorpi©ON, mesh (16 neighbours)

X

——
——
—0—

216 217 218 219 220 221 222 223 224 225

Number N of moonlets

Fig. 6. Time (in seconds) taken by our CPU to run one timestep (kick + drift or drift + kick), as a function of the number N of moonlets. For clarity, the times are divided
by N. The N moonlets were given initial semi-major axes between r = 2.9Rg and r = 12R,, eccentricities between 0 and 0.2, and inclinations between 0° and 10°. The mean
anomaly, argument of pericenter and longitude of the ascending node were distributed uniformly between 0 and 2z. All simulations were run with the same material®®, in the

same conditions (all processor cores were idle except the one running).

of the moonlets of the order of ~ 10773 when p = 3 and ~ 10704
when p = 6 (see Table D.3). The subdivision threshold s is the main
parameter (not precision altering) influencing the speed of the tree-
based methods. The optimal value of s was used for falcON, according
to Table D.3. We also used s = 102 for the standard tree code with
p =3, as it appeared to be optimal'® with our material®>. For falcON,
the parameters (Ncs, Nec pre» Nec,post) Were those of Appendix D. Refer
to Table D.3 for a parameter analysis.

With the brute-force method, NcorpiON and REBOUND turn out
to run almost equally as fast (solid black and dashed purple curve
in Fig. 6). REBOUND being slightly slower than NcorpiON can easily
be attributed to the versatility of REBOUND, which requires larger
data structures and increases the likelihood of a cache miss. On both
softwares, the brute-force method is slower than any other method for
N > 28

FalcON on NcorpiON turns out to be three to ten times faster than
the standard tree code (blue and green curve in Fig. 6). Even with
p = 6 (red curve), falcON is still faster than the standard tree code
with p = 3, while also being two orders of magnitudes more precise.
Our implementation of the standard tree code is also faster than that
of REBOUND (2.76 times faster for N = 223), which can be attributed to
NcorpiON using a mass dependent opening angle 6 (Dehnen, 2002, Eq.
(13)), whereas REBOUND uses a constant 6. For the same precision,
NcorpiON with falcON runs 25 times faster than REBOUND with the
standard tree code when N = 223 (solid blue and dashed yellow curves).

Without much surprise, the mesh algorithm turns out to be the
fastest method of all on Ncorpi®N for N < 2%, mainly due to the
simplicity of its implementation. This comes at the cost of a much
worse precision on the acceleration of the moonlets, since long-range
gravity is ignored (unless if with one of the three largest moonlets).
The dramatic increase in the running time of the method for N > 222
is due to the fact that it is impossible to keep constant the average
number of neighbors past a certain value of N. Indeed, the mesh-size
y is attributed a minimal value to prevent the whole mesh grid (whose

16 Optimal only if the same tree is used for collision detection and mutual
gravity computation. See footnote 3.4.1.

10

number of cells is constant and chosen by the user) to shrink below a
certain threshold (also chosen by the user). Above this value for N,
the average number of neighbors increases linearly instead of being
constant, and the mesh algorithm behaves in © (N?). Therefore, falcON
should be preferred to the mesh algorithm if no moonlet account for the
majority of the moonlet mass, or if N is too large. FalcON should always
be preferred to the standard tree code. Although the mesh algorithm
is faster than falcON over a full timestep due to its simplistic way of
handling gravity, falcON outperforms the mesh algorithm for the drift
phase, since collision search is faster with falcON.

In Fig. 6, a O(N) algorithm would have a constant curve. Therefore,
none of the four mutual interaction management modules of NcorpiON
is strictly O(N) (although falcON is really close to it for N > 2'9,
especially at order 6). Indeed, even if an algorithm is O(N) in the total
number of operations, when implemented on an actual CPU, the limited
size of the cache is such that the proportion of cache misses increases
with N. As a consequence, the proportion of clock cycles that the CPU
spends waiting for data increases with N and the time complexity ends
up being slightly worse than O(N).

5. Resolving collisions

NcorpiON provides several built-in ways in which collisions should
be resolved. In the parameter file, the user can decide that all collisions
are resolved elastically (hard-sphere collision without loss of energy),
inelastically (hard-sphere collision with loss of energy), by merging
the colliding moonlets together, or with the fragmentation model of
NcorpiON, detailed in Section 5.3.4.

In this section, we consider the collision between two moonlets of
masses m; and m, and radii R, and R,. The positions and velocities of
the moonlets, at the instant of the impact, are denoted by r|, r,, v, and
v,. We also denote

Ar=r;-r, and Av=v, -v,. (29)

In a general fashion, we refer to the largest moonlet as the target
(hereafter moonlet 2) and to the smallest one as the impactor (hereafter

J. Couturier et al.

moonlet 1). The impact angle is defined as'”

b2
—_—
(R; +Ry)

b

—_— 30
R +R, (30)

Q = arcsin <) =arccos , [1 —
where b < R| + R, is the impact parameter. We denote M = m; + m,
the total colliding mass. The density of the impactor is p; while that of

the target is p,.
5.1. Elastic collisions

We say that a collision is elastic if it conserves both energy and
momentum. Let v; and v; be the moonlets velocities after the impact.
If we write
v —-v =4 ana v;—v2=i, (1)

my my
then it is immediate to verify that the total momentum is conserved,
whatever the vector J. Let us write

J = ag (4r - Av) 4r, (32)

where a is a real number. The scalar product Ar - Av traduces the
violence of the impact, in the sense that, for a grazing collision, Ar-4v =
0, while for a frontal collision, it reaches an extremum Ar- Av = —ArAv.
The variation of kinetic energy AE at the impact reads

+
AE = ay (4r - Av)? <uae1Ar2 - 1) ‘ (33)

2m;m,
At the impact, we have Ar = R; + R, and the elasticity of the collision
reads

_ 2mymy
ag = . 34
(ml +m2) (Rl + Rz)

5.2. Inelastic collisions

The results of Section 5.1 suggest a very straightforward model for
non-elastic collisions. We simply write J = «(4r - Av) Ar, and if we
choose for a a non-zero value different from «, then the collision in
inelastic. Let us write

fmym, =L,
(m +m) (Ri+R)> 2
where f € R. Then the variation in kinetic energy due to the impact
reads

el>

(35)

mym
AE =2f (f —2) —2 cos? 0402 (36)
my +my
To prevent an energy increase, we must consider 0 < f < 2. The
condition that the two moonlets gets farther away from each other after
the impact reads Av' - Ar > 0. We have

AV - Ar=(1- f)(4v - 4Ar), 37)

and so we take f > 1 to prevent the moonlets from getting closer after
the collision. Ncorpi©ON’s model for non-merging and non-fragmenting
collisions thus relies on the parameter f (indicated by the user in the
parameter file of Ncorpi©ON), bounded by 1 < f < 2, such that values
of f close to 2 correspond to almost elastic collisions, whereas values
close to 1 correspond to very inelastic collisions.

5.3. Fragmentation and merging

Previous studies of Moon formation (e.g Ida et al., 1997, Salmon
and Canup, 2012) disregard the fact that, upon a violent collision,
moonlets may fragment instead of just merging or bouncing back. We
rely here on the existing literature about impacts and crater scaling for
the velocities and sizes of the fragments in order to achieve a realistic
model of fragmentation.

17 ¢ is an archaic Greek letter called qoppa.

11

New Astronomy 114 (2025) 102313

5.3.1. Velocity distribution

We follow the impact model of Holsapple and Housen (1986)
and Housen and Holsapple (2011), based on dimensional analysis. We
first constrain the ejection velocity v as a function of the distance x
from the impact site. Then we constrain the velocity distribution of the
fragments resulting from the impact. Let v(x) be the ejection velocity at
a distance x from impact and M*(v) := M* be the mass of fragments
ejected with a velocity greater than v. We assume the two following
hypothesis:

» The region of the target where material is ejected due to the
impact is large enough for the impactor to be considered point-
mass.'®

+ The impact is violent enough to overcome both the gravity of the
target and the strength of its material.

The first hypothesis clearly implies that the target is much larger than
the impactor,'® and as a consequence, the outcome of the collision does
not depend on the target radius R,. The second hypothesis implies
that M*(v) and v(x) do not depend on the surface gravity of the
impactor, nor on the strength of its material. Another consequence of
the first hypothesis is that the outcome of the impact depends on the
impactor through a unique scalar quantity, called coupling parameter
and defined as®

C = R, (Avcos9)* p|. (38)

The exponent y was constrained for a wide range of material assuming
the accepted value?! v = 0.4 and is given in Table 3 of Housen and
Holsapple (2011). For a non-porous target, we have y = 0.55 whether
it is liquid or solid, whereas y = 0.41 for a rubble-pile or sand-covered
target. The value of y is to be indicated by the user of NcorpiON if the
built-in fragmentation model is used. According to these assumptions,
there exists a functional dependency of the form

v= f(C,p,,Xx), (39)

that is re-written using the z-theorem and Eq. (38) as (Housen and
Holsapple, 2011)

oo [(2]
Av YR, \ oy ’

The constant C; was determined from fit to data by Housen and
Holsapple (2011). They provide possible values in their Table 3. For a
non-porous target, we have C; = 1.5 (solid or liquid), whereas C, = 0.55
for a rubble-pile or sand-covered target. We proceed similarly to obtain
M™*(v). There exists a functional dependency of the form

(40)

M* = f(C, p,,v), (41)

that the z-theorem transforms into

M*U;‘;pgv . kG, 42)

and then using Eq. (38) (Suetsugu et al., 2018, Sect. 5)

M:3_k<C1Aucos?>3”<p_l>3v_l. 43)
m; 4r v 12

The constant & is also provided by Table 3 of Housen and Holsapple
(2011). For a non-porous target, we have k = 0.2 (resp. k = 0.3) for
a liquid (resp. solid) target. For a rubble-pile or sand-covered target,

18 This assumption is not verified for low-velocity impacts, but the moonlets
merge instead of fragmenting in this case.

19 We stress that fragmentations are poorly resolved in NcorpiON when the
target and impactor are roughly of the same size.

20 Suetsugu et al. (2018) consider oblique impacts by replacing the usual 4v
by Avcos 9, where ¢ is the impact angle.

21 See footnote 5 of Housen and Holsapple (2011).

J. Couturier et al.

k = 0.3. The constants u, v, k and C, are chosen by the user in the
parameter file of NcorpiON.

Eq. (40) predicts infinitely large ejection velocities for arbitrarily
small x and is not verified for values of x smaller than the impactor
radius R;, where material is driven down the surface instead of being
ejected. Therefore, there exists a maximal ejection velocity given by
(Quillen et al., 2024)

"
Umaxzv(Rl):CIAv<—> .
)

Similarly, Eq. (43) must be modified to account for the fact that
M™*(vax) = 0. Following Housen and Holsapple (2011), we rewrite

(44)

it as
. C v\ ¥

M*(v) — 3_kp_2(cos9)3u <_1 U> <p_1> —-1]. (45)
m 4r p, v P2

5.3.2. Mass of the largest fragment
Following Suetsugu et al. (2018), we define the ejected mass m as
the mass unbounded to the largest fragment. That is, we write

M= M* (Uge)s (46)
where
1/3
Vese = oM and R = <ﬂ> 47)
4zp

and p is the averaged density. The mass 7 of the largest fragment
is simply given by m = M — m and is different from m, in general.
However, for a super-catastrophic collision (defined as m < M /10),
m# M —m and we use instead (Leinhardt and Stewart, 2012, Eq. (44))

e M (L8)‘3/ ?

10\9 M ’
where 1 is given by Eq. (46) and we redefine i as m = M — /. When
a super-catastrophic collision occurs, NcorpiON discards the ejected
mass from the simulation (assumed vaporized), and uses Eq. (48) to
determine the mass of the remaining moonlet.

(48)

5.3.3. Mass of successive fragments

Eq. (46) gives the mass of the largest fragment, and in this section,
we give an estimate of the mass of the remaining fragments. Hereafter,
the tail designates the set of all the fragments, largest excluded. Lein-
hardt and Stewart (2012) fit the size distribution of the remaining
fragments with

n(r) = Kr~ ¥+, (49)

where n(r)dr is the total number of fragments with radii between r and
r+dr, and K and f§ are constant. Let 7, and r, be the mass and radius
of the n'M largest fragment. We assume that all fragments are spherical
with density p and we write 7, := /. The total number of fragments
larger than the n'! largest fragment is

+o
n= / n(rydr = Er_ﬂ,
ﬂ n
-

n

(50)

which yields r, = (n#/K)~'/?. The total mass of fragments smaller than
the nth largest fragment is given by

n—1 r
_ "4 4
M - m, = —zpr’n(r)dr =
Tm=[3w

Egs. (50) and (51) show that a realistic description verifies 0 < § < 3.
Combining them, we obtain, for n > 2, the mass of the »™ largest

fragment from the recursive expression
- _3-8
m, =

n—1
"= <M —;mk)

This approach predicts an infinite number of fragments, and the partial
mass i +---+i, slowly converges towards M as n goes to infinity. Some

47erri_ﬁ

- 51
3G-5 ®U

(52)

12

New Astronomy 114 (2025) 102313

truncation rule on the fragment sizes has to be defined to prevent a too
large number of fragments. Eq. (52) gives for the mass of the second
largest fragment

3-0.
25 "
Assuming that the tail is made up only of fragments of mass m,, N is
defined as the number of fragments in the tail. From SPH simulations
in the gravity regime, Leinhardt and Stewart (2012) fit # = 2.85, which
yields N = 38. In order not to overcomplicate, we assume for NcorpiON
that all the fragments of the tail have a mass /,. The user chooses N
and Eq. (53) is used to determine #, and the exponent § of the power

.
= (53)

iy =

law. The fragmenting collision can be synthetized with the following
schema:

Before impact

After impact

&,

IEEEEEIINEN
I S m o

5.3.4. The fragmentation model of NcorpiON

The built-in fragmentation model of NcorpiON proceeds as follow.
In the parameter file, the user defines two thresholds m® « 1 and m(",
such that:

If i < m©® M, then the collision results in a merger.
Else if m < M /10, then the impact is super-catastrophic. Eq. (48)
is used and the tail is discarded.

Else if /i1, < m(V and < i, then the tail is made up of one unique
fragment of mass N, = .

Else, the two moonlets are broken into N + 1 pieces, where the
largest fragment has a mass m = M —m given by Eq. (46), and the
N other fragments have a mass i, given by Eq. (53).

The largest fragment is given velocity & and position 7 determined

in Section 5.3.6, whereas the N (resp. one) other fragments have

velocities oy, ¥, -+, Dy (resp.) determined in Section 5.3.5.

5.3.5. Position and speed of the tail’s fragments
We now estimate the velocities of the fragments after the impact,
using Eq. (45) for M*(v). We define

3u

* 3
aM =3ﬂ(ﬁ,+;()l(ﬁ) ,
v v

* P
m*(v) = '

(CD)]
where k = —M*(+00) = 3km,p, (cos9)* / (4zp,) and m*(v)dv is the
mass of fragments with speeds relative to the largest fragment in the
range [v, v + dv]. Since all N fragments of the tail are unbounded to the
largest fragment, the slowest of these is made up of particles having
been ejected with velocities between v.,. and some velocity u;. More

J. Couturier et al.

generally, the k™ fastest fragment of the tail has a velocity 7, with
respect to the largest fragment given by

uy
iy 0, = / m* (v)vdv, (55)

Up—1

where uy = Uege, Uy = Umay, and for all k < N, u,_y < &), < u;. The

speeds u, are found by writing

ity = /uk m*()dv = (M +K) (7, — 2;.) » (56)

up—1
where we defined z, = (Uesc/“k)3ﬂ' This yields z,_, — z;, = i,/ (1 + k),

or

ki,
P

zp=1- for 0 <k < N. (57)
From Eq. (55), we now obtain the scalar velocity of the kKt fastest

fragment of the tail as

T

k_l—z;), for1<k<N, (58)

ﬂ}’h+l{<z

~
U, =

k T
where?> ¢ = (3u—1)/3u. Surprisingly enough, these speeds are in-
dependent of Av, suggesting that a high impact velocity means more
fragmentation but does not translate into a faster ejecta. When the tail

is made up of one unique fragment, its scalar velocity is given by

3u—1
1 fUmax Uese M+ Kk v
U'=T/ w* ydp = Jese e () Pese .
m J, T m Umax

Vesc

(59

The existing literature gives little insight on the directions of fragments
following an impact (Suo et al., 2024 give some constraints but their
work is limited to impacts on granular media in an intermediate regime
between gravity and strength), and our model here is arbitrary. The
speeds of the tail’s fragments are given a direction with respect to the
largest fragment in the following way. We first give to the k™ fragment
of the tail the position

R+ R,

r

<
re=

Ar +2p, Ryu + 29, R,v, (60)

where R is the radius of the largest fragment and R, is the radius of
the tail’s fragments. We then give it the speed

~1
Uk Ar
(— + pu+ qu) s

Ar
\/1+pi+qi

where (p;.q;) € Z?, b, is given by Eq. (58) and the unit vectors u and

(61)

=1 _
v, =

v are defined by

_ ArxAv
ArAvsin @

v X Ar
u=

="~ 62
R; + R, (62)

If the collision is nearly frontal, then the vector v is ill-defined. In that
case we take for v any unit vector orthogonal to Ar. With N = 15 (or
p =45/17), =1 < p, <3 and*® -1 < g, < 1, the fragmented moonlets

would look like the following schema

22 < is an archaic Greek letter called stigma.

23 This choice ensures that more fragments are ejected forward than
backward, which sounds intuitive.

13

New Astronomy 114 (2025) 102313

While all fragments of the tail are unbounded to the largest frag-
ment, there is no reason why the fragments of the tail should be
unbounded to one another. In practice however, with our choice for
Eq. (61), all the fragments are unbounded, which prevents a chain
reaction of successive fragmentations, and ensures than no fragment
of the tail ends up being larger than the second largest fragment (as
would happen if fragments were bounded to one another).

5.3.6. Position and speed of the largest remnant

Choosing the position 7 and velocity © of the largest remnant
completes the definition of NcorpiON’s fragmentation model. Indeed,
the positions and speeds of the tail’s fragments are then given in the

inertial reference frame (0O, i, j, k) by

Fy=F +F D=0 +D. (63)

When the tail is reunited into a single moonlet, its position and speed
are F = ¥ + 7 and v = V' + &, where ¥ and ¥’ are defined by Egs. (60)
and (61) with p; = ¢; =0. Let

my m

2
=Mt (64)

=—uvy+ -2 d
1% = v 12 an r
cm 1 M 2 cm

M

be the velocity and position of the center of mass of the colliding pair.
We define

G =mr| Xv|+mryXv, (65)

the angular momentum of the pair at the collision. For a merger, the
conservation of the angular momentum (resp. the momentum) reads
M¥x0 = G (resp. U = v). It is interesting to notice that it is impossible
to preserve both the momentum and the angular momentum at the
collision without considering the spin. Indeed, the conservation of the
angular momentum implies that ¥ is orthogonal to G. However, from

Mv -G = Mv., - G=mmyv, - Ar X dv, (66)

we conclude that it is possible to conserve both the momentum and
the angular momentum only if Ar X Av = 0, or equivalently, only if
the collision is frontal (¢ = 0). For oblique collisions, the only way
to conserve both is to take into account the spin of the moonlets.
However, taking into account the spin complexifies the treatment of
collisions as well as the numerical implementation and slows down
the code. Therefore, NcorpiON does not implement the spin and if
the user chooses to use the fragmentation model or to resolve all
collisions by merging, then it must be decided if the momentum or
the angular momentum should be preserved upon impact. If falcON is
used to treat mutual interactions, then it makes more sense to preserve
the momentum upon collision, since by construction, falcON preserves
the total momentum when computing mutual gravity, but does not
preserve the total angular momentum.

When the colliding moonlets merge, the momentum is conserved
simply by taking ¥ = v, and ¥ = r.,, whereas we achieve the

J. Couturier et al.

conservation of the momentum with ¥ = v, — mY'/M and ¥ =
Fem — MF /M when the tail is reunited into a unique fragment. Finally,
when a full fragmentation occurs, we conserve the total momentum
with

N N
_— my 5 _ _ mn
v—vcm—]g1 1 Ok and F =rqy, ;ﬁrk (67)
Conserving the angular momentum is not straightforward and we
present our model for doing so in Appendix F.

6. Conclusions

We have presented with this paper a novel N-body software, faster
than existing N-body integrators on a single core implementation.
Unlike other similar softwares, NcorpiON is able to treat a fragmen-
tation subsequent to a violent collision. Mutual interactions (collisions
and self-gravity) can be treated with four different modules, whose
time complexities range from O(N) to O(N?). Using falcON module
for mutual interactions, NcorpiON is found to be 25 times faster than
the software REBOUND when N = 223, for the same precision in
mutual gravity computation. Furthermore, with multipole expansions
implemented up to order p = 8, NcorpiON can compute gravity rapidly
and precisely.

NcorpiON is very adapted to simulations of satellites or planet
formation, and we are currently using it to better understand the for-
mation of the Moon from a protolunar disk around the Earth, following
the giant impact between the proto-Earth and Theia. We are also using
NcorpiON and its viscoelastic module to simulate the close approach
of asteroid 99942 Apophis in 2029. The results of these works will
constitute two additional papers, that will be published afterwards.

NcorpiON has its own website and is distributed freely on the
following github repository. Both these resources provide extensive
documentation and the website also provides with a detailed overview
of the structure of NcorpiON’s code.

This software was written with time efficiency in mind and aims
to be as CPU-efficient and cache-friendly as possible. As such, we
believe it is among the fastest single-core N-body codes for large
N, if not the fastest.”” However, unlike other softwares, NcorpiON
lacks a parallelized version. Even though REBOUND is found to be
significantly slower than NcorpiON on a single-core run, it would
outperform NcorpiON if heavily parallelized. Therefore, we plan to
upgrade NcorpiON to a parallelized version in the future.

NcorpiON has its own fragmentation module that relies on crater
scaling and ejecta models to come up with a realistic outcome for
violent collisions between moonlets. However, this model makes as-
sumptions (e.g. impactor much smaller than target) that can be hard
to reconcile with the reality of a simulation. Furthermore, the direc-
tion of the fragments is chosen arbitrarily after a fragmentation, and
these issues could reduce the actual degree of realism of NcorpiON’s
fragmentation model.

Beyond planetary or satellite formation, disks of debris are also
observed by stellar occultation around some trans-Neptunian object like
the dwarf planet Haumea (Ortiz et al., 2017), or a smaller-sized body
called Quaoar (Morgado et al., 2023). Both these objects feature rings
located outside of their Roche radius, and NcorpiON could be a relevant
tool to understand what mechanisms prevent the rings’ material from
accreting. Similarly, the viscoelastic tool of NcorpiON, based on the
work of Frouard et al. (2016), could be useful to simulate non-rigid
bodies subject to tides.

24 GyrfalcON on NEMO could be faster, since it also uses falcON. However,
it does not handle collisions or fragmentations.

14

New Astronomy 114 (2025) 102313

CRediT authorship contribution statement

Jérémy Couturier: Writing — review & editing, Writing — origi-
nal draft, Visualization, Validation, Software, Methodology, Investiga-
tion, Formal analysis, Conceptualization. Alice C. Quillen: Supervision,
Resources. Miki Nakajima: Resources, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability
Data will be made available on request.
Acknowledgments

Jérémy Couturier thanks Walter Dehnen for helpful transatlantic
discussions about the intricacies of FalcON algorithm and for material
about the Hilbert order. He also thanks Hanno Rein for help with
REBOUND. The authors thank the anonymous reviewer for pointing
out relevant references. This work was partly supported by NASA,
United States grants 80NSSC19K0514 and 80NSSC21K1184. Partial
funding was also provided by the Center for Matter at Atomic Pressures
(CMAP), the National Science Foundation (NSF) Physics Frontier Center
under Award PHY-2020249, and EAR-2237730 by NSF. Any opinions,
findings, conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect those of the
National Science Foundation. This work was also supported in part
by the Alfred P. Sloan Foundation, United States under grant number
G202114194.

Appendix A. Notations

We gather for convenience all the notations used throughout this
work in Table A.2.

Appendix B. General orbital dynamics

This appendix focuses on aspects of orbital dynamics that are not
moonlet—moonlet interactions (treated in Section 3).

B.1. Interactions with the center of mass of the Earth

We consider here the gravitational interactions between the moon-
lets and the center of mass of the Earth. Let r be the position of a
moonlet in the geocentric reference frame. Its gravitational potential
per unit mass reads

GM,
v=-"8, (B.1)

r

where ¢ is the gravitational constant. The moonlet’s acceleration is
given by

F=-V,V, (B.2)
that is,
M,
__Me, (B.3)
3

NcorpiON uses dimensionless units such that Rg = Mg = 1 and
G = 472. The choice ¢ = 472, instead of the more common ¢ = 1,
ensures that the unit of time is the orbital period at Earth surface. The
user can change this in the parameter file.

https://ncorpion.com
https://github.com/Jeremycouturier/NcorpiON
https://github.com/Jeremycouturier/NcorpiON
https://github.com/Jeremycouturier/NcorpiON
https://github.com/Jeremycouturier/NcorpiON
https://github.com/Jeremycouturier/NcorpiON
https://github.com/Jeremycouturier/NcorpiON
https://github.com/Jeremycouturier/NcorpiON
https://github.com/Jeremycouturier/NcorpiON
https://github.com/Jeremycouturier/NcorpiON
https://github.com/Jeremycouturier/NcorpiON
https://github.com/Jeremycouturier/NcorpiON
https://github.com/Jeremycouturier/NcorpiON
https://github.com/Jeremycouturier/NcorpiON
https://github.com/Jeremycouturier/NcorpiON
https://github.com/Jeremycouturier/NcorpiON
https://github.com/Jeremycouturier/NcorpiON
https://teuben.github.io/nemo/man_html/gyrfalcON.1.html

J. Couturier et al.

Table A.2

New Astronomy 114 (2025) 102313

Notations used in this paper, ordered roughly by first appearance (top to bottom). Notations used right after their definition only are not

included here. + (stigma) and ¢ (qoppa) are archaic Greek letters.

Notation Definition Notation Definition Notation Definition Notation Definition

bold vector or tensor d/dt N number of moonlets Ry Earth radius

Mg Earth mass M, Sun mass R¢ Moon radius m; moonlet mass

r moonlet position v moonlet speed 4 gravitational constant ¢ geoid altitude

Y, spherical harmonic ~ Q Earth rotation Q. (GMyg /R?B)I/ g J, 27 zonal harmonic
Py(2) % (322-1) y mesh-size x number of neighbors s subdivision threshold
5, Eq. (7) Fonax Egs. (8) & (11) ree Egs. (9) & (12) 54 Eq. (10)

0 opening angle M® Eq. (20) m Cm, AR Fig. 3

2(2) 1/z V"% (R) Eq. (17) P expansion order o] Eq. (18)

® Eq. (19) c Eq. (25) ™ arbitrary tensor Neeebes Sect. 3.4.4 & 3.4.5
Ar, Av Eq. (29) Q Eq. (30) b impact parameter p moonlet density

a Egs. (34) & (35) f Eq. (35) C,u,v Eq. (38) M*(v) Eq. (45)

k,C, near Eq. (43) Vese Eq. (47) m Eq. (46) m below Eq. (46)

p Eq. (49) i, Eq. (52) N Eq. (53) m© Section 5.3.4

F.0 F m*(v) Eq. (54) T GBGu-1)/3u ?2,172 Egs (60) & (61)
Py Eq. (63) Fem Ve EQ. (64) G Eq. (65) A Sp— S,

M my + m, g.3.@ Eq. (F.12) K below Eq. (54) R, R, below Eq. (60)

B.2. Earth flattening and interactions with the equatorial bulge

The Earth is not exactly a sphere, and under its own rotation, it
tends to take an ellipsoidal shape. The subsequent redistribution of
mass modifies its gravitational field, affecting the moonlets. Let £(0, @)
be the altitude of the geoid of the Earth, where
X =rsinfcos @,

Y = rsin@sin g, (B.4)
Z =rcoso,

is the relation between the cartesian and spherical coordinates of
(O, 1,7, K). If Rg denotes the mean radius of the Earth, then the geoid
is generally defined as the only equipotential surface such that

2r b4
/ / ¢(0,9)sinfd0dep = Rg,
0 0

that is, as the only equipotential surface whose average height is the
mean radius. Expanding the geoid over the spherical harmonics as

(B.5)

{(0.9) = Rg [1 + h(6,)], and
+oo |

hO.0) =Y D €,Y1,(0.9)

1=2 m=—1

(B.6)

satisfies Eq. (B.5). For reference, the definition of the spherical harmon-
ics used here is given in Appendix A of Couturier (2022). If the Earth
is spherical, then its potential is radial and we take {(6, ») = Ry, that
is, €, = 0 for all / and m.

Similarly as for the geoid, we write the potential raised by the
redistribution of mass within the Earth as (e.g. Boué et al., 2019)

GMg .
V(r,0,p) = - [140(r,0,)] + Vy(r,0),

+oo | R 1

o 0.0)=, Y (7®> Vi Yim (6. 9).
1=2 m=—1

where Vo (r,0) = Q%1% (Py(cos§) —1) /3 is iil}x[l potential raised by the

rotation itself. We denote Q, = (QM€B / R-g9 the Keplerian frequency

at Earth’s surface. With this notation, the potential raised by the Earth

deformed under its own rotation can be rewritten

(B.7)

M
V(r.0.9) = _T® [0+ o(r, 0, @)] — %92#,

to IR\l (B.8)
o 0,0)= 3 Y (?) VinYin (0.).
1=2 m=—1
where V,,, = V,,, if (I, m) # (2,0) and
s 122 P
Vag = Vag = = = —. (B.9)
20 20 393 RZ;

15

If we assume h < 1 and v <« 1 (this is equivalent to Q> < Q2), then
it is easy to verify from the definition of the geoid that (Wahr, 1996,
Sect. 4.3.1)

€m=Vim . (B.10)

:R$
This gives a relation between the figure of the Earth (the geoid) and
the potential raised by the redistribution of mass. If we limit ourselves
to the quadrupolar order and if we assume that the problem does not
to depend on ¢ (axisymmetry), then all the V, and ¢, vanish for
(I, m) # (2,0). For the fluid Earth, it can be shown that (Couturier, 2022,
Sect. 5.2.1; Wahr, 1996, Eq. (4.24))

5Q°

€ = —2 "= (B.11)
6 02

The J, coefficient is defined as J, = —V,, (with the convention of

Appendix A of Couturier, 2022 for the spherical harmonics). For the
fluid Earth, Egs. (B.9), (B.10) and (B.11) yield

1 .Q?
=-—=. B.12
2=3 @ (B.12)
According to Eq. (B.7), a moonlet orbiting the Earth at position r in
the geocentric reference frame, feels, from the equatorial bulge, the

potential per unit mass*
2 2
GMgR CMgR2

@
I = r—3J2P2(C0S 9) = —T

Writing r = xi + yj + zk, we have k- r = z, and then using Eq. (B.2), the
contribution of Earth’s equatorial bulge to the acceleration of a moonlet
takes the form

_ OMgRGJ) [1522 372
2r2
The user chooses the sideral rotation period of the Earth (or central
body) in the parameter file of NcorpiON. Then, Eq. (B.12) and the

fluid approximation are used to determine the J, of the central body.
Alternatively, the user can also force a particular value for J,.

Jy (rP=3(k-r)?). (B.13)

r r—3zk|. (B.14)

5

B.3. Interaction with a perturbator
The interaction between a moonlet, located at r, and a perturbator,

located at rg in the geocentrical reference frame can be taken into
account in the model by adding to the moonlet the potential per unit

mass

Vo = —GMg <
25 Due to the axisymmetry, we can go to the geocentric reference frame by
simply removing V,, in Eq. (B.7).

1 r-rg

|r—rol B S

(B.15)

J. Couturier et al.

To the quadrupolar order, this gives

2
M, r-r
Ve = _g—f <3¥ —r2>. (B.16)
2r*O re
Eq. (B.2) yields, for the acceleration of the moonlet
M .
oY @<r—3' 'Gro>. (B.17)
3 2
o) o)

In order to allow for a large variety of orbits for the perturbator,
the position vector rg is set on a Keplerian orbit around the Earth.
The elliptic elements of this Keplerian orbit are chosen by the user in
the parameter file. Then, NcorpiON converts the elliptic elements into
cartesian coordinates in order to obtain the value of the vector rg in
Eq. (B.17).

Appendix C. Multipole moment M™(sp) of a cell from those of its
children

We give here for n < 5 the expression of the multipole moment
M®(sp) of a parent cell (Eq. (20)) from the multipole moments m(s,,)
of its children cells. NcorpiON implements expansion orders up to p = 8
which requires computation of the multipole moments up to n = 7,
but we refrain from providing M® and M” here as to not overload
this appendix. We believe that similar expressions for n > 5 can be
easily deduced. The notations s and s, are the expansion centers of the
parent and of one of its children. We denote A = s —s, = (A}, Ay, A3)
and we assume that the expansion centers are the barycentres, leading
to the simplification MV(sz) = m(M(s,) = 0. The contribution M (b'i B
from child b to the multipole moment of its parent B is given by

= mO, (€1

(C.2)

2 2 2 €3
2) (2) 2)
- (m,.j A+ mD A+ A,.) —mOA A A

)]
[M/HB]U.M =Mk

) @ @ @
i A) + (m,.j Ay +mP A A +mP A A,

(3) (3) (3)
- (mijkAl g A+ mg A

(C.49)
+ DA+ A A+ mfl)A,-A/-) +mO AN ALA,,

®) _ .0 _ 4)
[Mh—>B = Mikim (mijkl
(4)

+m;

ijlm

4)

A, +m A

][jklm m T Wijlem
4)

(4)
A+ M fim

A+ my,, A

(3)
/\,») + (mijkAlAm
3) 3) 3 3)
+ m[j]AkAm + miijkA, +m g AjAy, +my AA

3 3) 3) 3)
+my, A A+ mjklAiAm + ml,kmA,-A, + mjzmAfAk

(C.5)

(3) (2))
iy Ay) = (3 A A A+ A4 A,

+ DA A A+ m) A A A+ DA A A,

+) A A A+ 1A A+) A A A,

0 A A+ AN A) =m0 A A A,
where (i, j, k,l,m) € {1,2,3}5. The multipole moment of the parent is
then obtained by summing over its children

(n)
M,

children b

M®(sp) = (C.6)

Appendix D. Parameters of falcON algorithm

Unlike the brute-force method, which requires no parameter to be
specified, Dehnen’s algorithm falcON depends on various parameters,
that are

16

New Astronomy 114 (2025) 102313

The order p of the multipole expansions (Eq. (25)). This param-
eter influences both the speed and the precision of the gravity
computation.

The subdivision threshold s (Section 3.4.1). This parameter has a
clear influence on the speed but not on the precision of the gravity
computation.

The opening angle 6, of the root cell (Eq. (12)). Like p, this
parameter influences both the speed and the precision.

The three thresholds N, Necpre and Neepose defined in the
procedure TreeWalk (Section 3.4.5). They only slightly influence
the speed and do not influence the precision.

Choosing these parameters randomly before using NcorpiON is rather
arbitrary, and we provide with this appendix and Table D.3 a more
systematic approach. For expansion orders in the range 1 < p < 8
and 6,,;, going from 0.25 to 0.75, we evaluated the performances of
our implementation of falcON (in terms of speed and precision) for a
disk of N = 10% bodies. The characteristics of this disk are given below
Eq. (28). The parameters (N, Nec pre» Ncc,post) turned out to have little
importance and we fixed them to (12,0, 16) for collision search and
to (64,8,64) (resp. (128,256, 1024)) for gravity computation with p < 4
(resp. p > 4).

For a choice of the pair (p,6y,), Table D.3 gives at the top of
the cell the median relative error (defined by Eq. (28)) and at the
bottom the corresponding running time (in seconds) for one force
calculation with our material®3. The small subscript can be added
to the power of 10 in order to obtain the relative error at the 99th
percentile instead of the median relative error. The first columns gives
the optimal choice for s given p that minimizes the total timestep
length (force calculation + collision search). The value in parenthesis
minimizes the gravity evaluation and should be chosen when collisions
are not searched. Finally, the last column gives the running time for
one collision search. It increases with p because at large values of
p, the subdivision threshold s that is used (because it minimizes the
sum gravity calculation + collision search) is sub-optimal for collision
search (for which an optimal s is less than 10). All running times were
estimated by averaging over eight timesteps (except for the brute-force,
for which only one timestep was executed).

Like for Fig. 4, the relative errors in Table D.3 are computed by only
considering the accelerations due to the self gravity of the disk itself in
Eq. (28). If the system features a central mass 10* times more massive
than the disk, and since the accelerations due to the central mass are
computed directly without error (the central mass is not in the octree),
then the powers of 10 in Table D.3 must be decreased by « in order to
obtain the relative errors of the system.

In order to give an example on how to use this Table, suppose we
want to simulate a disk with a central mass 10° times more massive
than the disk (e.g a protoplanetary disk). Furthermore, we require
that 99% of the bodies have their acceleration computed with five
significant digits (the relative error at the 99th percentile must be
< 1073). According to Table D.3, the choice (p, 0y, 5) = (4,0.55,30)
gives a relative error at the 99th percentile of 10=325+1.16=3 — (=509,
Furthermore, with a timestep time of 3.31s x (N/10%), this is the
fastest cell of the Table to provide the required precision, hence our
final choice. If we now require the same precision when simulating
a viscoelastic body with the dedicated NcorpiON’s module,* then we
choose (p,0yin.s) = (7,0.3,85) and obtain a relative error at the 99th
percentile of 107646+132 = 10514 for a timestep time less than 32.8s
x (N/108).

26 The viscoelastic body is made of massive nodes connecting by spring and
dampers in parallel. In that case, there is no central mass and no collisions.

J. Couturier et al.

Table D.3

Performances of falcON as a function of p and 6,,;, for N = 10°. In each cell we provide the median relative error (Eq. (28)) as a power of 10 (top)
and the time in seconds for one force calculation (bottom) with our material. The last column gives the time in seconds for one collision search.
The first column specifies the subdivision threshold s used, that minimizes the timestep length (force calculation + collision search). The value in
parenthesis minimizes the force calculation. The subscript of 10 needs to be added to the power to obtain the relative error at the 99th percentile.
For example, with (p, 0. s) = (3,0.4,15), falcON took 2.80 s to complete one timestep for a median error 10->** and an error at the 99" percentile
1079, The brute force method took 6256s (104 minutes) to complete one timestep.

New Astronomy 114 (2025) 102313

Omin Collision
s P 0.25 0.3 0.35 04 0.45 0.5 0.55 0.6 0.65 0.7 0.75 search

—1.21 —1.17 —1.13 —1.10 —1.07 —1.05 —1.03 —1.0 —1.00 —0.99 —0.97

10(1 5) 1 10(+0.84) 10(+0.84) 10(+0.84) 10(+0.83) 10(+0.83) 10(+0.83) 10(+0.82) 10(+0.8]2) 10(+0.82) 10(+0.82) 10(+0 82)
1.74 1.42 1.20 1.08 1.01 0.96 0.92 0.90 0.86 0.84 0.83 0.43

10(15) 2 10(:26;‘;) 10(:262;;) 10(:26 132) 10(:26 131) 10(:26'3) 10(:1613) 10(:16.(?3) 10(:1622;) 10(:16.?2) 10(:16222) 10(16.732;)
2.81 2.09 1.69 1.44 1.27 1.17 1.10 1.05 1.00 0.97 0.94 0.44

150 3 Waie 10CG 103G, MOGEE 0%, W0, 10GAS, 10GhL, 100G 100N, 103
5.31 3.70 2.87 224 1.89 1.65 1.49 1.39 1.30 1.23 1.20 0.56

1 —4.38 —4.11 1 —3.88 1 —3.69 —3.52 1 —3.38 1 —3.25 —3.14 1 —3.04 1 -2.97 —2.89

30(35) 4 (+1.13) (+1.13) (+1.14) (+1.15) (+1.16) (+1.16) (+1.16) (+1.17) (+1.17) (+1.19) (+1.19)
10.9 7.24 5.46 4.06 3.24 2.72 2.38 2.13 1.96 1.87 1.71 0.93

soss) s Wens 100N, 10G 10GEE,10GE, 10 0GR, 10GNL 105G 10, 10U
23.5 154 10.8 8.09 6.37 5.18 4.30 3.76 3.35 3.05 2.87 1.46

1 —6.22 1 —5.76 —5.38 1 —5.06 1 —4.75 —4.49 1 —4.29 1 —4.12 1 —3.95 1 —3.81 1 —3.68

50(55) 6 (+1.22) (+1.24) (+1.26) (+1.27) (+1.31) (+1.31) (+1.29) (+1.29) (+1.30) (+1.33) (+1.35)
33.6 222 155 11.6 9.01 7.24 6.12 5.27 4.55 4.10 3.5 1.46

—7.0 —6.4 —5.99 —5.6 —5.2t —4.93 —4.6 —4. —4.2! —4. —3.9:

75(85) 7 10(471(3]1)]0(41.352) 10(451.35) 10(451.313) 10(451.4?7) 10(441.40) 10(441.335) 10(:‘1.43}:5) 10(:‘1.3};) 10(:‘1.14;) 10(+1.456)
49.0 32.8 22.6 16.7 13.1 10.6 8.45 717 6.25 5.55 5.02 2.05

noarsy s Mehm o 10Ghn 1005 100G 100 10 1055 100 10GS 103, 100
722 48.0 339 24.8 19.0 15.3 12.4 10.3 8.89 7.86 7.04 2.93
brute-force 2134 4122

2 Clock : ~ 4.5 GHz. Cache L, L,, L; : 80 KB, 1.25 MB, 24 MB. RAM : 32 GB DDR5 4800 MT/s.

Appendix E. Precession of the periapsis in the Leapfrog integrator

The Leapfrog integrator is a second-order symplectic integrator
easy to implement in practice. It is the integrator currently used by

is the kick operator, with a = —08/dq the acceleration. The Leapfrog
only approximately integrates the Hamiltonian H. There exists how-
ever a Hamiltonian K that is exactly integrated by the Leapfrog. By
construction, we have, for SABA,

NcorpiON. The main flaw of this integrator, besides its low order, is the e LAl la — grli (E.4)
potentially large precession of the periapsis that it induces on the orbits.
Here, we use a Hamiltonian formalism to give an analytical expression An expansion to third order in 7 gives
of the periapsis precession. e =1+ M, (E.5)
I . where
E.1. Hamiltonian of the Leapfrog integrator .
M=Ly+Ls+5 (L2 +Ly+ LyLy+LyLy)
. I _)

W.e consider a Hamiltonian H = A +. B where. A and B are i (4Lf4 + 4L§3 + 3L34 Ly+ 3L,3Lf4 (E.6)

both integrable. We assume that the generalized coordinates of H are 24

denoted by the vector g and that their associated momenta are denoted
by p. We denote L, = {,-} the Lie derivative along the flow of y and
we use for the Poisson bracket the convention

+6L3L 4 +6L L% + 6L LygL),

and T is the identity operator. Writing Ly = In(I+7M)/t = M—tM?/2+
72M?3 /3, we end up with

0y 0 _90x 0 5
rvl===-== . T 2 2
op dq 0q op L,C=LA+LB+ﬁ(2LBLA+2LALB ®7)
For a timestep 7, the Leapfrog integrator is defined by the operators —Ly Li\ _ Lit Ly +2L Lyl —4LgLLy).
(Laskar and Robutel, 2001) . . .
. . Using the identity
SABA; = ext4¢ s34 and
. . (E.1) Liapy=LaLp—LgLy, (E.8)
SBAB| = e2"Betlueits,
. L . this can be rewritten
When A and B are respectively the kinetic and potential part of the))
Hamiltonian, we recover the traditional sequence of steps where speeds Ksapa, =H- ;—4 {A,{A,B}} + % {{A,B},B}, (E.9)
and positions are determined independently and at interleaved times. .
A better approach in N-body problems is to consider that A is the Kep- and, by swapping A and /3
. 2)
lerian part and B is the pertur’batlve part. However in Ncorpl(?N, close Kspan = H - T AB) B+ = (A {AB)). (E.10)
approaches between the particles are frequent (several per timestep) 24 12

and we stick to the traditional definition where

We now consider the case where the system being integrated is a
perturbed Keplerian motion (e.g. a planetary system or a protoplanetary

7L _
P =Patep), (E.2) disk). The perturbation is irrelevant in estimating the effect of the
is the drift operator and Leapfrog integrator and we take for H the Kepler Hamiltonian
1 U
e5(p.g) = (p+ra.q), €3 M=A+B=3p - (E.11)

17

J. Couturier et al.

with ¢ = r the position, p = v the speed and p the gravitational
parameter. This yields

3 2

L (r- v)2 + e

(A (A B} =%
,‘

2
HABy.BY =5
r

3

(E.12)

The Hamiltonian K exactly integrated by the Leapfrog method then
takes the form

2u?

)

+6—?(r~v)2>.
r

22 (v 3pu)
ICSABA1=H_ﬁ(r_3_r_5(r'U)
T

24\ 4

E.2. Dynamics of the Leapfrog integrator

(E.13)

Kspan, 3

An efficient way of computing the precession of the periapsis is
to average the Hamiltonian K over the orbital period. We use the
Delaunay canonical coordinates (A, G, H; M, w, 2) (e.g. Laskar, 2017)
where the momenta are A = \/ﬁ with a the semi-major axis, the
angular momentum per unit mass G = AV 1 — 2 with e the eccentricity
and H = G cosi with i the inclination. The generalized coordinates are
the mean motion M, the argument of the periapsis w and the longitude
of the ascending node Q. Using the averaged quantities (e.g. Boué and
Laskar, 2006, Appendix A)

L/ZHM(r‘v)sz— we
27 Jo rs 2a* (1 - 62)5/2’
2r 2 2 2
1 v H (1 +2e)
Py ”TdM = o (E.14)
7 Jo s a4(1—e2)

1 2r ﬂ_sz_ ﬂ2(1+92/2)
4 - a (1)5/2’

the averaged Hamiltonian integrated by the Leapfrog integrator reads

27 Jo —e?

B 1 2 1 2r
K= 7 o Ksapa,dM = 7 Kspan dM
2 u? (1 +e2/2) (E.15)
= H + —5/2,
24a* (1 - e2)
or, in Delaunay coordinates
_ 28 (34% - G?)
K=H+ ——— (E.16)

48A5G5
The precession of the periapsis is given by the Hamilton equation
oo OB _ PG 58
TG T 16 ASGS
Converting back to the elliptic elements and denoting » the mean
motion, the precession of the periapsis due to the Leapfrog reads
2n® (14 €%/4)
a(1-)®
For a reasonable choice of the timestep, this precession is generally
small with respect to the precession induced by real physical effects.

As an example, the precession of the periapsis due to the equatorial
bulge in an equatorial orbit is (e.g. Touma and Wisdom, 1998)

(E.17)

g = — (E.18)

nd, Ré

29 E.1
e (E.19)

. . - 3
wy, =wy, + 82, = 3
Considering a timestep 1/100 of the surface orbital period, an orbit with
eccentricity e = 0.2 and an equatorial bulge J, = 0.0618 (corresponding

to a length of day of 4 hours for the Earth), we obtain

. -1
HE —0.00224(a) .
wy, SRg

(E.20)

18

New Astronomy 114 (2025) 102313

Appendix F. Conservation of the angular momentum upon impact

We present here our method to preserve the angular momentum
up to machine precision when a merging or fragmenting impact oc-
curs. Since NcorpiON preserves the total momentum when computing
gravity” but not the angular momentum, it makes more sense to
preserve the total momentum as well when resolving collisions. For this
reason, the possibility for the user of NcorpiON to preserve the angular
momentum during collisions has been removed in a recent update, and
NcorpiON now preserves the total momentum instead. However, we
still give the method here for reference. We recall that

m

+m2 and +m2
M, M, roo= My
MU M2 m = Ml M2

are the velocity and position of the center of mass of the colliding pair,
whereas

! (F.1)

cm

G =mr| Xv| +myry Xv,, (F.2)

is the angular momentum to be conserved.
F.1. Case of a merger

If the collision results in a merger, then the outcome is a single
moonlet of mass M = m; + m,. The conservation of the total angular

momentum reads
G=MFxD. (E.3)

Eq. (F.3) only has solutions if 7 is perpendicular to G. Therefore, we
write

F=rey + 6F, (F.4)
and we choose the smallest possible value of 67 that verifies

. o, mmy
G-F=G-o6F+ ry - Ar x Av = 0. (F.5)

Eq. (F.5) is of the form a-w = b with unknown w = 57. We are lead to
minimize |w|? under the constraint a - w = b. We write

LGA,w)=|w)®+ A(a-w-b), (F.6)

where 1 is a Lagrange multiplier. The gradient of £ vanishes when
w = ba/a?, and therefore we take

mymy G
-(Av X Ar) —.
o r, - (dv r) P

6F = (F.7)
Once 7 is known, Eq. (F.3) has the form axw = b with unknown w = o.
Since a-b = 0, this equation has solutions given by*® w = (b x a) /a*+aa
for any a € R. Therefore, we take

1
V= ——=GXF+af, (F.8)
MR
where we choose the real number a in order to minimize |0 — v.,|. We
have

|7 = vem|” = 7 = 2aF - vy + K, (F.9)

where K does not depend on «, and the minimal value of |I — vy |
is thus reached at a« = (7 v.y) /7. Finally, we achieve the conserva-
tion of the total angular momentum by giving to the unique moonlet
resulting from the merger the position and velocity

mym
Py + A2 avxan Z
) G (F.10)
- 1 - T Ueym
vV=—GXF+ .
M2 72

27 As long as the standard tree code is not used.
28 This comes from a X (b X a) = a®b—(a - b) a.

J. Couturier et al.

F.2. Case of a fragmentation

If the collision results in a full fragmentation (7, > m(®), then the
conservation of the total angular momentum reads

(F.11)

In the case of a partial fragmentation (i, < m©® <), the tail is re-
united into a single moonlet and the sum in Eq. (F.11) has only one
term. We define®

oq
I
R
N}
™M=
~
~
X
A}
=

(F.12)

M=
~
~

= w
Il Il
NE! 51
el
=~

and Eq. (F.11) can be rewritten

G=MiXD+FXU+3SX0D+3g, (F.13)

with unknowns 7 and ». If 7 is known, then o is given by the equation

axv=>b, where

(F.14)
a=MF+5 and b=G—-FXxiu—3.
Eq. (F.14) only has solutions if a - b = 0, and we first constrain 7 with
the equation a - b = 0. Then, we obtain ¥ from Eq. (F.14). There are
infinitely many choices for both 7 and #, and in each case we choose
them in order to be as close as possible from the conservation of the
total momentum, that is, as close as possible to

M=

—_
~
+

inF + Fl)=MF+5=Mrq,

=
)
~
I

(F.15)

<

mo +

3
)
M=

—
(\U
+
&

~

I

D+ii = Mugy,.

>
Il

In order to determine ¥, we thus write MF + § = M (r, + 6F) and we
choose the smallest 67 that verifies a - b = 0. We have
a-b=(MF+5) -G-8 +F-Gxi)

& (F.16)

= (rem +6F) - (MG — Mg+ 53X it) =0.

We are left to minimize |67| under a constraint of the form a - 67 = b.
This was already done in the merger case with the theory of Lagrange
multiplier and we have

55 b _ (rem-a)a
r_az__ a2
a=M(G-3+35Xxi.

, where (F.17)

Now that 7 is known, we can obtain ¢ from Eq. (F.14). The solutions
of Eq. (F.14) are given by

+ aa, (F.18)

where a € R. We choose for the real number « the value that is closest
from preserving the total momentum, that is, we choose the value of «
that minimizes ‘M (0 —vem) + 12‘ (see Eq. (F.15)). We have

1 - 2
m)M (v_ vcm) Zu| (F.19)
=a2a2—2a<vcm—ﬁ>~a+K,

2% For a partial fragmentation, the sums are reduced to one term and 7, has
to be replaced by .

19

New Astronomy 114 (2025) 102313

where K does not depend on «a and therefore, we choose
B (Vem — /M) -a

= (F.20)

We uniquely determined 7 and ¥ in such a way that the total angular
momentum is conserved upon impact up to machine precision, whether
the collision results in a merger or in a fragmentation.

References

Barnes, J., Hut, P., 1986. A hierarchical O(N log N) force-calculation algorithm. Nature
324, 446-449. http://dx.doi.org/10.1038/324446a0.

Boué, G., Correia, A.C.M., Laskar, J., 2019. On tidal theories and the rotation of viscous
bodies, vol. 82. pp. 91-98. http://dx.doi.org/10.1051/eas/1982009.

Boué, G., Laskar, J., 2006. Precession of a planet with a satellite. Icarus 185, 312-330.
http://dx.doi.org/10.1016/j.icarus.2006.07.019.

Cheng, H., Greengard, L., Rokhlin, V., 1999. A fast adaptive multipole algorithm in
three dimensions. J. Comput. Phys. 155, 468-498. http://dx.doi.org/10.1006/jcph.
1999.6355.

Couturier, J., 2022. Dynamics of Co-Orbital Planets. Tides and Resonance Chains (Ph.D.
thesis). Observatoire de Paris, https://theses.hal.science/tel-04197740.

Dehnen, W., 2002. A hierarchical O(N) force calculation algorithm. J. Comput. Phys.
179, 27-42. http://dx.doi.org/10.1006/jcph.2002.7026.

Dehnen, W., 2014. A fast multipole method for stellar dynamics. Comput. Astrophys.
Cosmol. 1, 1. http://dx.doi.org/10.1186/540668-014-0001-7.

Frouard, J., Quillen, A.C., Efroimsky, M., Giannella, D., 2016. Numerical simulation of
tidal evolution of a viscoelastic body modelled with a mass-spring network. Mon.
Not. R. Astron. Soc. 458, 2890-2901. http://dx.doi.org/10.1093/mnras/stw491.

Holsapple, K.A., Housen, K.R., 1986. Scaling laws for the catastrophic collisions of
asteroids. Mem. Soc. Astron. Ital. 57, 65-85.

Housen, K.R., Holsapple, K.A., 2011. Ejecta from impact craters. Icarus 211, 856-875.
http://dx.doi.org/10.1016/j.icarus.2010.09.017.

Ida, S., Canup, R.M., Stewart, G.R., 1997. Lunar accretion from an impact-generated
disk. Nature 389, 353-357. http://dx.doi.org/10.1038/38669.

Khuller, S., Matias, Y., 1995. A simple randomized sieve algorithm for the closest-
pair problem. Inform. and Comput. 118 (1), 34-37. http://dx.doi.org/10.1006/
inco.1995.1049.

Laskar, J., 2017. Andoyer construction for Hill and Delaunay variables. Celest. Mech.
Dyn. Astron. 128, 475-482. http://dx.doi.org/10.1007/s10569-017-9761-0.

Laskar, J., Robutel, P., 2001. High order symplectic integrators for perturbed Hamilto-
nian systems. Celest. Mech. Dyn. Astron. 80, 39-62. http://dx.doi.org/10.1023/A:
1012098603882.

Leinhardt, Z.M., Stewart, S.T., 2012. Collisions between gravity-dominated bodies. I.
outcome regimes and scaling laws. Astrophys. J. 745, 79. http://dx.doi.org/10.
1088/0004-637X/745/1/79.

Malhotra, D., Biros, G., 2015. PVFMM: A parallel kernel independent FMM for particle
and volume potentials. Commun. Comput. Phys. 18, 808-830. http://dx.doi.org/
10.4208/cicp.020215.150515sw.

Morgado, B.E., Sicardy, B., Braga-Ribas, F., Ortiz, J.L., Salo, H., Vachier, F., Des-
mars, J., Pereira, C.L., Santos-Sanz, P., Sfair, R., de Santana, T., Assafin, M.,
Vieira-Martins, R., Gomes-Jtnior, A.R., Margoti, G., Dhillon, V.S., Fernandez-
Valenzuela, E., Broughton, J., Bradshaw, J., Langersek, R., Benedetti-Rossi, G.,
Souami, D., Holler, B.J., Kretlow, M., Boufleur, R.C., Camargo, J.I.B., Duffard, R.,
Beisker, W., Morales, N., Lecacheux, J., Rommel, F.L., Herald, D., Benz, W.,
Jehin, E., Jankowsky, F., Marsh, T.R., Littlefair, S.P., Bruno, G., Pagano, I., Bran-
deker, A., Collier-Cameron, A., Florén, H.G., Hara, N., Olofsson, G., Wilson, T.G.,
Benkhaldoun, Z., Busuttil, R., Burdanov, A., Ferrais, M., Gault, D., Gillon, M.,
Hanna, W., Kerr, S., Kolb, U., Nosworthy, P., Sebastian, D., Snodgrass, C.,
Teng, J.P., de Wit, J., 2023. A dense ring of the trans-neptunian object quaoar
outside its Roche limit. Nature 614, 239-243. http://dx.doi.org/10.1038/541586-
022-05629-6.

Ortiz, J.L., Santos-Sanz, P., Sicardy, B., Benedetti-Rossi, G., Bérard, D., Morales, N.,
Duffard, R., Braga-Ribas, F., Hopp, U., Ries, C., Nascimbeni, V., Marzari, F.,
Granata, V., Pal, A., Kiss, C., Pribulla, T., Komzik, R., Hornoch, K., Pravec, P.,
Bacci, P., Maestripieri, M., Nerli, L., Mazzei, L., Bachini, M., Martinelli, F., Succi, G.,
Ciabattari, F., Mikuz, H., Carbognani, A., Gaehrken, B., Mottola, S., Hellmich, S.,
Rommel, F.L., Ferndndez-Valenzuela, E., Campo Bagatin, A., Cikota, S., Cikota, A.,
Lecacheux, J., Vieira-Martins, R., Camargo, J.I.B., Assafin, M., Colas, F.,
Behrend, R., Desmars, J., Meza, E., Alvarez-Candal, A., Beisker, W., Gomes-
Junior, A.R., Morgado, B.E., Roques, F., Vachier, F., Berthier, J., Mueller, T.G.,
Madiedo, J.M., Unsalan, O., Sonbas, E., Karaman, N., Erece, O., Koseoglu, D.T.,
Ozisik, T., Kalkan, S., Guney, Y., Niaei, M.S., Satir, O., Yesilyaprak, C., Puskullu, C.,
Kabas, A., Demircan, O., Alikakos, J., Charmandaris, V., Leto, G., Ohlert, J.,
Christille, J.M., Szakats, R., Takdcsné Farkas, A., Varga-Verebélyi, E., Marton, G.,
Marciniak, A., Bartczak, P., Santana-Ros, T., Butkiewicz-Bak, M., Dudziriski, G., Ali-
Lagoa, V., Gazeas, K., Tzouganatos, L., Paschalis, N., Tsamis, V., Sdnchez-Lavega, A.,
Pérez-Hoyos, S., Hueso, R., Guirado, J.C., Peris, V., Iglesias-Marzoa, R., 2017. The
size, shape, density and ring of the Dwarf planet Haumea from a stellar occultation.
Nature 550, 219-223. http://dx.doi.org/10.1038/nature24051.

http://dx.doi.org/10.1038/324446a0
http://dx.doi.org/10.1051/eas/1982009
http://dx.doi.org/10.1016/j.icarus.2006.07.019
http://dx.doi.org/10.1006/jcph.1999.6355
http://dx.doi.org/10.1006/jcph.1999.6355
http://dx.doi.org/10.1006/jcph.1999.6355
https://theses.hal.science/tel-04197740
http://dx.doi.org/10.1006/jcph.2002.7026
http://dx.doi.org/10.1186/s40668-014-0001-7
http://dx.doi.org/10.1093/mnras/stw491
http://refhub.elsevier.com/S1384-1076(24)00127-1/sb9
http://refhub.elsevier.com/S1384-1076(24)00127-1/sb9
http://refhub.elsevier.com/S1384-1076(24)00127-1/sb9
http://dx.doi.org/10.1016/j.icarus.2010.09.017
http://dx.doi.org/10.1038/38669
http://dx.doi.org/10.1006/inco.1995.1049
http://dx.doi.org/10.1006/inco.1995.1049
http://dx.doi.org/10.1006/inco.1995.1049
http://dx.doi.org/10.1007/s10569-017-9761-0
http://dx.doi.org/10.1023/A:1012098603882
http://dx.doi.org/10.1023/A:1012098603882
http://dx.doi.org/10.1023/A:1012098603882
http://dx.doi.org/10.1088/0004-637X/745/1/79
http://dx.doi.org/10.1088/0004-637X/745/1/79
http://dx.doi.org/10.1088/0004-637X/745/1/79
http://dx.doi.org/10.4208/cicp.020215.150515sw
http://dx.doi.org/10.4208/cicp.020215.150515sw
http://dx.doi.org/10.4208/cicp.020215.150515sw
http://dx.doi.org/10.1038/s41586-022-05629-6
http://dx.doi.org/10.1038/s41586-022-05629-6
http://dx.doi.org/10.1038/s41586-022-05629-6
http://dx.doi.org/10.1038/nature24051

J. Couturier et al.

Quillen, A.C., Luniewski, S., Rubinstein, A.E., Couturier, J., Glade, R., Nakajima, M.,
2024. Wind erosion and transport on planetesimals. Icarus 411, 115948. http:
//dx.doi.org/10.1016/j.icarus.2024.115948.

Rein, H., Liu, S.-F., 2012. REBOUND: An open-source multi-purpose n-body code for
collisional dynamics. Astron. Astrophys. 537, A128. http://dx.doi.org/10.1051/
0004-6361/201118085.

Salmon, J., Canup, R.M., 2012. Lunar accretion from a Roche-interior fluid disk.
Astrophys. J. 760, 83. http://dx.doi.org/10.1088/0004-637X/760/1/83.

Stewart, S.T., Leinhardt, Z.M., 2009. Velocity-dependent catastrophic disruption criteria

for planetesimals. Astrophys. J. 691, L133-L137. http://dx.doi.org/10.1088/0004-
637X/691/2/L133.

20

New Astronomy 114 (2025) 102313

Suetsugu, R., Tanaka, H., Kobayashi, H., Genda, H., 2018. Collisional disruption of
planetesimals in the gravity regime with iSALE code: Comparison with SPH code
for purely hydrodynamic bodies. Icarus 314, 121-132. http://dx.doi.org/10.1016/
j.icarus.2018.05.027.

Suo, B., Quillen, A.C., Neiderbach, M., O’Brient, L., Miakhel, A.S., Skerrett, N.,
Couturier, J., Lherm, V., Wang, J., Askari, H., Wright, E., Sanchez, P., 2024.
Subsurface pulse, crater and ejecta asymmetry from oblique impacts into granular
media. Icarus 408, 115816. http://dx.doi.org/10.1016/j.icarus.2023.115816.

Touma, J., Wisdom, J., 1998. Resonances in the early evolution of the earth-moon
system. Astron. J. 115, 1653-1663. http://dx.doi.org/10.1086,/300312.

Wahr, J., 1996. Geodesy and Gravity. Samizdat Press.

Warren, M.S., Salmon, J.K., 1995. A portable parallel particle program. Comput. Phys.
Comm. 87, 266-290. http://dx.doi.org/10.1016/0010-4655(94)00177-4.

http://dx.doi.org/10.1016/j.icarus.2024.115948
http://dx.doi.org/10.1016/j.icarus.2024.115948
http://dx.doi.org/10.1016/j.icarus.2024.115948
http://dx.doi.org/10.1051/0004-6361/201118085
http://dx.doi.org/10.1051/0004-6361/201118085
http://dx.doi.org/10.1051/0004-6361/201118085
http://dx.doi.org/10.1088/0004-637X/760/1/83
http://dx.doi.org/10.1088/0004-637X/691/2/L133
http://dx.doi.org/10.1088/0004-637X/691/2/L133
http://dx.doi.org/10.1088/0004-637X/691/2/L133
http://dx.doi.org/10.1016/j.icarus.2018.05.027
http://dx.doi.org/10.1016/j.icarus.2018.05.027
http://dx.doi.org/10.1016/j.icarus.2018.05.027
http://dx.doi.org/10.1016/j.icarus.2023.115816
http://dx.doi.org/10.1086/300312
http://refhub.elsevier.com/S1384-1076(24)00127-1/sb26
http://dx.doi.org/10.1016/0010-4655(94)00177-4

	NcorpiN : A software for N-body integration in collisional and fragmenting systems
	Introduction
	Structure of NcorpiON and how to actually run a simulation
	Mutual interactions between the moonlets
	Detecting a collision between a pair of moonlet
	Brute-force O(N2) algorithm
	The mesh O(N) algorithm
	Tree-based algorithms
	Tree building
	Tree climbing
	Collision search
	Mutual gravity computation
	Multipole expansion
	Standard tree code
	FalcON: An efficient tree walk
	Peano–Hilbert order and cache efficiency

	Numerical performances of NcorpiON
	Numerical integration
	Performances

	Resolving collisions
	Elastic collisions
	Inelastic collisions
	Fragmentation and merging
	Velocity distribution
	Mass of the largest fragment
	Mass of successive fragments
	The fragmentation model of NcorpiON
	Position and speed of the tail's fragments
	Position and speed of the largest remnant

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Notations
	Appendix B. General orbital dynamics
	Interactions with the center of mass of the Earth
	Earth flattening and interactions with the equatorial bulge
	Interaction with a perturbator

	Appendix C. Multipole moment M(n)(sB) of a cell from those of its children
	Appendix D. Parameters of falcON algorithm
	Appendix E. Precession of the periapsis in the Leapfrog integrator
	Hamiltonian of the Leapfrog integrator
	Dynamics of the Leapfrog integrator

	Appendix F. Conservation of the angular momentum upon impact
	Case of a merger
	Case of a fragmentation

	References

