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A B S T R A C T

NcorpiN is a general purpose N-body software initially developed for the time-efficient integration of
collisional and fragmenting systems of planetesimals or moonlets orbiting a central mass. It features a
fragmentation model, based on crater scaling and ejecta models, able to realistically simulate a violent impact.

The user of NcorpiN can choose between four different built-in modules to compute self-gravity and
detect collisions. One of these makes use of a mesh-based algorithm to treat mutual interactions in (𝑁) time.
Another module, much more efficient than the standard Barnes–Hut tree code, is a (𝑁) tree-based algorithm
called FalcON. It relies on fast multipole expansion for gravity computation and we adapted it to collision
detection as well. Computational time is reduced by building the tree structure using a three-dimensional
Hilbert curve. For the same precision in mutual gravity computation, NcorpiN is found to be up to 25 times
faster than the famous software REBOUND.

NcorpiN is written entirely in the C language and only needs a C compiler to run. A python add-
on, that requires only basic python libraries, produces animations of the simulations from the output files.
NcorpiN can communicate with REBOUND’s webGL viewer via MPI for 3D visualization. The name NcorpiN,
reminding of a scorpion, comes from the French N-corps, meaning N-body, and from the mathematical notation
(𝑁), due to the running time of the software being almost linear in the total number 𝑁 of bodies. NcorpiN
detects collisions and computes mutual gravity faster than REBOUND, and unlike other N-body integrators, it
can resolve a collision by fragmentation. The fast multipole expansions are implemented up to order eight to
allow for a high precision in mutual gravity computation.
1. Introduction

NcorpiN is an open-source 𝑁-body software specialized in simu-
lations of collisional systems, published under the GNU General Public
License. It has its own website available here1 and the source code is
publicly distributed on github.2

The development of the software began in parallel of our work
on the formation of the Moon, and as such, we hereafter refer to the
orbiting bodies as moonlets, although NcorpiN is a general-purpose
𝑁-body software. NcorpiN is particularly adapted to the simulation of
systems where the mean free path is short, typically less than the semi-
major axis, but also of systems where self-gravity plays an important
role. The Moon is thought to have formed from a disk generated by a
giant impact, and previous works on the formation of the Moon decide
upon collision if the moonlets should bounce back or merge depending

∗ Corresponding author at: Department of Physics and Astronomy, University of Rochester, 227 Hutchison Hall, Rochester, 14627, NY, United States of
America.

E-mail address: jcouturi@ur.rochester.edu (J. Couturier).
1 https://ncorpion.com
2 https://github.com/Jeremycouturier/NcorpiON

on the impact parameters (e.g. Ida et al., 1997, Salmon and Canup,
2012), but never consider the fact that a violent collision may lead to
their fragmentation. In order to address this issue, NcorpiN features
a built-in fragmentation model that is based on numerous studies of
impact and crater scaling (Holsapple and Housen, 1986, Stewart and
Leinhardt, 2009, Housen and Holsapple, 2011, Leinhardt and Stewart,
2012, Suetsugu et al., 2018) to properly model a violent collision. Our
study of the Moon formation makes extensive use of NcorpiN and will
be published after the present work.

Since a recent update, NcorpiN can also be used to simulate a
viscoelastic body. In this case, the viscoelastic body is modeled by a
collection of 𝑁 nodes connected by springs and dampers in parallel
(e.g. Frouard et al., 2016). We are currently using the viscoelastic
module of NcorpiN to simulate the close approach of April 2029 of
asteroid 99942 Apophis.
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NcorpiN comes with four different built-in modules of mutual
interactions management, one of which uses the efficient fast multipole
method-based falcON algorithm (Dehnen, 2002, 2014). Each of the four
modules is able both to detect collisions and to compute self gravity.
Overall, NcorpiN was developed with time-efficiency in mind, and its
running time is almost linear in the total number 𝑁 of moonlets, which
allows for more realistic disks to be simulated. Low-performance CPUs
can be used to run NcorpiN.

In Section 2, we present the structure of the code of NcorpiN. In
ection 3, the challenging task of time-efficiently considering
oonlet−moonlet interactions is carried out and the four built-in mod-
les of mutual interactions management are presented. In Section 4, we
o over the speed performances of NcorpiN’s four built-in modules
f mutual interactions management. Finally, Section 5 deals with the
esolution of collisions, where we present, among other things, the
ragmentation model of NcorpiN. For convenience to the reader, we
ather in Table A.2 of Appendix A the notations used throughout the
rticle. Section 3 only concerns mutual interactions between the moon-
ets. Other aspects of orbital dynamics, that are not moonlet−moonlet
nteractions, such as interactions with the equatorial bulge, are pushed
n Appendix B in order to prevent the paper from being too long.

Hereafter,  denotes the center of mass of the system, and in a
eneral fashion, the mass of the Earth and of the Sun are denoted
y 𝑀⊕ and 𝑀⊙, respectively. Let 𝑁 be the total number of moonlets
rbiting the Earth and for 1 ≤ 𝑗 ≤ 𝑁 , 𝑚𝑗 is the mass of the 𝑗th moonlet.
he inertial reference frame is (, 𝒊, 𝒋,𝒌), while the reference frame

attached to the rotation of the Earth is (, 𝑰 ,𝑱 ,𝑲), with 𝒌 = 𝑲 . The
transformation from one to another is done through application of the
rotation matrix 𝜴, which is the sideral rotation of the Earth. All vectors
and tensors of this work are bolded, whereas their norms, as well as
scalar quantities in general, are unbolded.

2. Structure of NcorpiN and how to actually run a simulation

The website of NcorpiN features a full documentation3 as well as a
section where the structure of the code is discussed.4 As such, it can be
considered as an integral part of this work and we will refrain here from
giving too much details. Instead, we stay succinct and the interested
reader is invited to visit NcorpiN’s website.

Moonlets are stored in an array of structures that holds their carte-
sian coordinates. In order to increase cache efficiency, the moonlet
structure is defined such that its size is 64 bytes, which is generally a
submultiple of a cache line. When arrays of dynamical size are needed,
NcorpiN makes use of a hand-made unrolled linked list, that we call
chain. Unrolled linked lists are linked lists5 where more than one value
is stored per node. Storing many values per node reduces the need for
pointer dereferences and increases the locality of the storage, making
unrolled linked lists significantly faster than regular linked lists.

When the mesh (𝑁) algorithm is used to detect collisions and
ompute mutual gravity, chains are used to store the ids (in the moonlet
rray) of the moonlets in the different cells of the hash table. When
ither falcON (𝑁) fast multipole method or the standard (𝑁 ln𝑁)
ree code is used to detect collisions and compute mutual gravity, then
hains are used to store the moonlets’ ids in each cell of the octree.

The different structures used to build and manipulate the octrees
re explained in the website. After the tree is built with the general
onstruction based on pointers, it is translated into a flattree where
he cells are stored in a regular array. This procedure allows for a
ignificant CPU time to be saved (Section 3.4.6).

3 https://ncorpion.com/#setup
4 https://ncorpion.com/#structure
5 A linear data structure where each node holds a value and a pointer

owards the next value.
 b

2 
Among all existing 𝑁-body softwares, the one closest to NcorpiN
is REBOUND, although REBOUND does not implement falcON multi-
pole algorithm for mutual gravity computation and does not handle
fragmentations. REBOUND can however be used in parallel. GyrfalcON
on NEMO is also similar to NcorpiN since it uses falcON algorithm
for mutual gravity computation, but it is galaxy oriented and does not
handle collisions.

The installation of NcorpiN from the github repository is straight-
orward.6 The initial conditions of the simulation, the different physical
uantities, and the choice of which module is to be used for mutual
nteractions, is decided by the user in the parameter file of NcorpiN.
hen, the simulation is run and an animation created from the com-
and line. The complete documentation is provided both in the website

nd the github repository.
The simulations can feature a central mass or not. If present, the

entral mass plays a particular role in the sense that it can have an
quatorial bulge and other bodies can raise tides on it. The user decides
n the parameter file if a central mass should be present or if all the
odies play the same role. The user also has the possibility of perturbing
he system with a distant star, for example a star around which the
entral body may be orbiting if it is a planet, or a binary star if the
entral body is a star.

. Mutual interactions between the moonlets

We consider in this section mutual interactions between the moon-
ets. The general aspects of orbital dynamics, those not related to
oonlet−moonlet mutual interactions, are treated in Appendix B. As

ong as mutual interactions between the moonlets are disregarded, the
imulation runs effectively in (𝑁) time. However, the moonlets can
nteract through collisions and mutual gravity, and managing these
nteractions in a naive way results in a very slow integrator. Hereafter,
mutual interaction denotes either a collision or a gravitational mutual

nteraction. We review in this section the four modules implemented in
corpiN that can deal with mutual interactions between the moonlets,
amely

• (𝑁2) brute-force method.
• (𝑁 ln𝑁) standard tree code.
• (𝑁) falcON fast multipole method.
• (𝑁) mesh-grid algorithm.

ach of the four modules is able to treat both the detection of collision
nd the computation of self gravity (NcorpiN adapts Dehnen’s falcON
lgorithm so it can also detect collisions). The module chosen for a
imulation is used both for collision search and gravity computation.

.1. Detecting a collision between a pair of moonlet

Before delving into the presentation of the four mutual interaction
odules, we describe how NcorpiN decides if two given moonlets will

ollide in the upcoming timestep. Note that apart from the brute-force
ethod, these modules rarely treat mutual interactions in a pair-wise
ay.

Given two moonlets with positions 𝒓1 and 𝒓2 and masses 𝑚1 and 𝑚2,
ll four modules rely on the following procedure to determine if the
oonlets will be colliding during the upcoming timestep.

Let 𝒗1 and 𝒗2 be the velocities of the moonlets and 𝑅1 and 𝑅2 their
adii. Let us denote 𝛥𝒗 = 𝒗1 − 𝒗2 and 𝛥𝒓 = 𝒓1 − 𝒓2. Approximating
he trajectories by straight lines, we decide according to the following
rocedure if the moonlets will collide during the upcoming timestep.
e first compute the discriminant

= (𝛥𝒓 ⋅ 𝛥𝒗)2 + 𝛥𝑣2
[

(

𝑅1 + 𝑅2
)2 − 𝛥𝑟2

]

. (1)

6 The installation should go seamlessly under Linux and MacOS systems,
ut we did not adapt NcorpiN for Windows.
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Fig. 1. Schematic representation of a two-dimensional 𝛾-mesh around the Earth. The neighborhood of the red moonlet, defined as the cell containing it plus all the adjacent cells,
is shown with a red square.
Then, the time 𝛥𝑡 until the collision is given by

𝛥𝑡 = −
𝛥𝒓 ⋅ 𝛥𝒗 +

√

𝛥
𝛥𝑣2

. (2)

A collision will occur between the moonlets in the upcoming timestep
if, and only if, 𝛥𝑡 ∈ R and 0 ≤ 𝛥𝑡 ≤ 𝑑𝑡, where 𝑑𝑡 is the size of the
timestep. If that is the case, the collision is resolved using results from
Section 5.

3.2. Brute-force (𝑁2) algorithm

The most straightforward way of treating mutual interactions is
through a brute-force algorithm where all 𝑁(𝑁−1)∕2 pairs of moonlets
are considered. At each timestep, the mutual gravity between all pairs
is computed, and the algorithm decides if a collision will occur between
the two considered moonlets in the upcoming timestep. However,
this naive procedure yields a (𝑁2) time complexity, limiting the
total number of moonlets to a few thousands at best on a single-core
implementation (e.g. 1000 ≤ 𝑁 ≤ 2700 in Salmon and Canup, 2012).

3.3. The mesh (𝑁) algorithm

Khuller and Matias (1995) described in 1995 a (𝑁) algorithm
based on a mesh grid to find the closest pair in a set of points in the
plane. Their algorithm is not completely straightforward to implement
and only allows for the closest pair of moonlets to be identified. Here,
we describe a mesh-based three-dimensional simplified version of their
algorithm able to detect collisions in (𝑁) time.

For a real number 𝛾 > 0, we build a 𝛾-mesh. At each timestep,
we only look for collisions between moonlets that are in each other
neighborhood, and we only compute the gravitational interactions
between moonlets in each other neighborhood. In Fig. 1, we provide a
schema of a 𝛾-mesh and the definition of neighborhood. If 𝛾 is chosen
3 
as a function of 𝑁 and such that, on average, each moonlet has (1)
moonlets in its neighborhood, then the algorithm runs in (𝑁) time.

In practice in NcorpiN, when the mesh algorithm is used to
treat mutual interactions, moonlets are put in the mesh-grid one after
the other, and moonlets already populating their neighborhood are
identified. A hash table of chains is used to remember which moonlets
occupy which cells of the grid. This procedure ensures that pairs are
only treated once.

In order to choose the mesh-size 𝛾, let us assume that initially, all
the moonlets are located in a disk of constant aspect ratio ℎ∕𝑟, at a
radius 𝑟 ≤ 𝑅max. Then they occupy a volume

 = 4
3
𝜋𝑅3

max sin 𝜍 = 4
3
𝜋𝑅3

max

√

ℎ2∕𝑟2

1 + ℎ2∕𝑟2
, (3)

where tan 𝜍 = ℎ∕𝑟. In order for each moonlet to have, on average, 𝑥
moonlets in its neighborhood, the mesh size must verify (3𝛾)3 ≤ 𝑥∕𝑁 ,
that is

𝛾 ≤
( 4𝜋𝑥
81𝑁

)1∕3 ( ℎ2∕𝑟2

1 + ℎ2∕𝑟2

)1∕6

𝑅max. (4)

With ℎ∕𝑟 = 0.05, 𝑅max = 10𝑅⊕, 𝑁 = 105 and 𝑥 = 8, this gives
𝛾 = 0.08526𝑅⊕, or 𝛾 = 543.2 km. If the 𝑁 moonlets have, let us say, a
total mass that of the Moon, then their average radius is 𝑅 = 𝑅$∕𝑁1∕3.
For 𝑁 = 105 this gives 𝑅 = 37.4 km. The condition that the moonlets
are smaller than 𝛾 is 2𝑅 ≤ 𝛾. Choosing 𝑥 = 8 and 𝑅max = 10𝑅⊕, this
gives

tan ℎ
𝑟
≥ 162

𝜋𝑥

( 𝑅$
𝑅max

)3
≈ 0.0001307, (5)

that is, ℎ∕𝑟 ≳ 1.3 10−4. Choosing for 𝛾 the critical value given by Eq. (4),
and for ℎ∕𝑟 a value much larger than that predicted by Eq. (5) ensures
that most of the moonlets are smaller than the mesh-size.

In the parameter file of NcorpiN, the user indicates the desired
number 𝑥 of neighbors for the simulation and Eq. (4) is used at the first
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Fig. 2. Left : Schematic representation of a quadtree around the Earth built with 𝑠 = 5. The root cell is shown with a thick black square, whereas its descendants are shown with
colored lines whose thicknesses decrease with their depth into the tree. The children of the root cell are blue, the grandchildren are red, etc ... Right : A zoom-in image showing
the South-East child of the root cell, its maximal radius 𝑟max, and the maximal radii of its descendants. Cells with one moonlet have a zero maximal radius, and those are not
shown. For clarity, the maximal circles are shown with the color and thickness of their corresponding cell, and diagonal crosses show their centers 𝒔̄.
time-step to estimate a suitable value of the mesh-size 𝛾. Then, at each
time-step, the value of 𝛾 is updated according to the expected number
𝑥′ of neighbors computed at the previous timestep, in order to match
the user’s requirement. More precisely, if 𝛾 ′ denotes the mesh-size at
the previous timestep, then the new value of 𝛾 for the current timestep
is given by

𝛾 = 𝛾 ′
( 𝑥
𝑥′

)1∕3
. (6)

The largest moonlets of the simulation can sometimes be larger
than 𝛾. When this happens, the corresponding moonlet is not put in
the hash table but instead, mutual interactions between that moonlet
and any other moonlet are treated. The user indicates in the parameter
file of NcorpiN the number of cells along each axis7 and the minimal
sidelength of the total mesh-grid, which is translated into a minimal
value for the mesh-size 𝛾.

The mesh algorithm disregards gravitational interactions between
moonlets not in each other neighborhood, and while it is very efficient
in detecting collisions, it only poorly approximates mutual gravity.
In order to improve the mesh algorithm, NcorpiN also computes
mutual gravity between any moonlets and the three largest moonlets.
Unless the three largest moonlets account for the majority of the total
moonlet mass, the mesh algorithm is poorly adapted to mutual gravity
computation.

3.4. Tree-based algorithms

We now present the two remaining modules of NcorpiN that
can search for collisions or compute mutual gravity using a three-
dimensional tree, or octree. Contrary to the mesh algorithm, these
algorithms consider long-range mutual interactions as well. The first al-
gorithm, hereafter referred as standard tree code, was published in 1986
by Barnes and Hut (1986) for mutual gravity computation, and adapted

7 Care must be taken to ensure that the hash table fits into the RAM.
4 
in 2012 by Rein and Liu (2012) for collision detection in REBOUND.
The second algorithm, called FalcON, was published in 2002 by Dehnen
(2002) for mutual gravity computation and we adapted it to collision
search as well.

Both the standard tree code and falcON use a fast multipole Taylor
expansion for mutual gravity computation, and take advantage of
the fact that collisions are short-range for collision search. FalcON is
significantly faster than the standard tree code at both mutual grav-
ity computation (for the same precision) and collision detection (see
Fig. 6).

3.4.1. Tree building
Both algorithms use an octree, whose building procedure is not

detailed here, but described in Barnes and Hut (1986) and schemat-
ically represented in Fig. 2. Cells containing at most 𝑠 moonlets are
not divided into children cells (𝑠 = 1 in Barnes and Hut (1986)). As
the same tree is used for both collision search and mutual gravity
computation, it is possible to build it only once per timestep to reduce
the computational effort.8

Hereafter, we adopt the naming convention of Dehnen (2002) where
a node, or cell, is a cubic subdivision of the space, a child refers to a
direct subnode of a node, and a descendant refers to any subcell of a
cell. A leaf is a childless node and we abusively refer to the moonlets
contained by a leaf as children nodes of that leaf. On the left panel of
Fig. 2, we provide a schematic representation of a two-dimensional tree
(quadtree) around the Earth with 𝑠 = 5.

8 The tree-based algorithms have a different optimal value for 𝑠 according
to whether they are used to detect collisions or to compute mutual gravity. It
could be interesting to build distinct trees with a different 𝑠 for collisions and
gravity. Time is lost by building two trees but also saved by using the optimal
𝑠. We did not investigate what was best.
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Fig. 3. Multipole expansion between two interacting cells 𝐴 and 𝐵.
3.4.2. Tree climbing
The tree climbing procedure consists in computing several quanti-

ties for all cells of the tree, recursively from the children nodes. The
tree climbing procedure differs slightly for collision search or mutual
gravity computation.

Collision search
When searching for collisions, we define the center 𝒔̄𝐴 of cell 𝐴 as

the average position of the 𝑁𝐴 children nodes it contains

𝒔̄𝐴 =
∑

child 𝑎 of 𝐴

𝒔̄𝑎
𝑁𝐴

, (7)

and its maximal and critical radii recursively as

𝑟max,𝐴 = max
child 𝑎 of 𝐴

(

𝑟max,𝑎 + |

|

𝒔̄𝑎 − 𝒔̄𝐴||
)

, (8)

and

𝑟crit,𝐴 = 𝑟max,𝐴 + max
child 𝑎 of 𝐴

(

𝑟crit,𝑎 − 𝑟max,𝑎
)

. (9)

If a child node 𝑎 is a moonlet (that is, if 𝐴 is a leaf), then 𝒔̄𝑎 = 𝒓𝑎
is the moonlet’s position, 𝑟max,𝑎 = 0 and 𝑟crit,𝑎 = 𝑅𝑎 + 𝑑𝑡 𝑣𝑎, where
𝑅𝑎 is the moonlet’s radius, 𝑑𝑡 the timestep (common to all moonlets
in NcorpiN), and 𝑣𝑎 the moonlet’s scalar velocity. Starting from the
leaf cells, we go up the tree and use Eqs. (7), (8) and (9) to compute
recursively from the children nodes the center 𝒔̄, the maximal radius
𝑟max and the critical radius 𝑟crit of each cell. On the right panel of Fig. 2,
we show the centers and maximal radii of the South-East child of the
root cell and of its descendants.

Mutual gravity computation
When computing mutual gravity, we define the expansion center

𝒔𝐴 of cell 𝐴 of mass 𝑀𝐴 as the center of mass of the children nodes it
contains

𝒔𝐴 = 1
𝑀𝐴

∑

child 𝑎 of 𝐴
𝑀𝑎𝒔𝑎. (10)

The maximal radius 𝑟max,𝐴 is defined recursively in the same way as in
collision search

𝑟 = max
(

𝑟 + |𝒔 − 𝒔 |

)

. (11)
max,𝐴 child 𝑎 of 𝐴 max,𝑎 | 𝑎 𝐴|

5 
However, the critical radius is defined differently as

𝑟crit,𝐴 = 𝑟max,𝐴∕𝜃(𝑀𝐴), (12)

where the opening angle 𝜃(𝑀𝐴) is given by Eq. (13) of Dehnen (2002).
If a child node 𝑎 is a moonlet (that is, if 𝐴 is a leaf), then 𝒔𝑎 = 𝒓𝑎 is the
moonlet’s position and 𝑟max,𝑎 = 0. Starting from the leaf cells, we go up
the tree and use Eqs. (10), (11) and (12) to compute recursively from
the children nodes the expansion center 𝒔, the maximal radius 𝑟max and
the critical radius 𝑟crit of each cell.

For both collision search and mutual gravity computation, if the
distance from the center (or expansion center) of a cell to its farthest
corner is smaller than 𝑟max, then 𝑟max is replaced by this distance. Two
cells are said to be well-separated if the distance between their centers
(or expansion centers) is larger than the sum of their critical radii, that
is, if

𝑟crit,𝐴 + 𝑟crit,𝐵 ≤ |

|

𝒔̄𝐴 − 𝒔̄𝐵|| . (13)

The same definition applies with 𝒔 instead of 𝒔̄ for mutual gravity
computation. When treating mutual gravity, the multipole moments
𝑴 (𝑛) are also computed for all cells recursively from the children cells
during the tree climbing. More details on doing so are provided in
Appendix C.

How the octree can be used to look for collisions is trivial. Given
the definition of 𝑟crit, it is straightforward to verify that moonlets
of cell 𝐴 will not collide with moonlets of cell 𝐵 in the upcoming
timestep if 𝐴 and 𝐵 are well-separated. However, how to compute
mutual gravitational interactions with the octree is not so obvious.

3.4.3. Multipole expansion
The computation of mutual gravity with the octree relies on multi-

pole expansions. The mathematical framework in spherical coordinates
can be found in Cheng et al. (1999), whereas Warren and Salmon
(1995) provide it in cartesian coordinates. NcorpiN operates in carte-
sian coordinates and we closely follow Warren and Salmon (1995).
However, their work does not provide a detailed derivation of Eq. (25),
which is core to Dehnen (2002) and to NcorpiN, and we derive here
the required mathematical framework.

In Fig. 3, let us say that we want to compute the acceleration of
moonlets of 𝐴 due to their gravitational interaction with moonlets
of 𝐵. Since the critical circles do not intersect, these two cells are
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well-separated. From the point of view of moonlets of 𝐴, moonlets
of 𝐵 can thus be seen as a whole, and at lowest order, it is as if
they were all reunited at their center of mass9 𝒔𝐵 . At higher order,
the mass distribution inside cell 𝐵 can be taken into account through
the multipole moments 𝑴 (𝑛) of the cell (Eq. (20)) to reach a better
recision. The gravitational potential at location 𝒙 in cell 𝐴 due to the
ravity of cell B is given by10

(𝒙) =
∑

𝑖∈𝐵
𝜇𝑖 𝑔(𝒙 − 𝒙𝑖), (14)

here 𝜇𝑖 = 𝑚𝑖, 𝑚𝑖 and 𝒙𝑖 are the mass and position of the 𝑖th moonlet
f 𝐵, and 𝑔(𝒙) = 1∕𝑥 is the Green function of the Laplace operator. As
uggested by Fig. 3, we write

− 𝒙𝑖 = 𝜟 +𝑹 + 𝒔𝐵 − 𝒙𝑖, (15)

here 𝑹 = 𝒔𝐴 − 𝒔𝐵 and 𝜟 = 𝒙 − 𝒔𝐴 and we Taylor expand the Green
unction 𝑔(𝒙−𝒙𝑖) around the cell separation 𝑹 up to a certain order 𝑝.

(𝒙 − 𝒙𝑖) =
𝑝
∑

𝑛=0

(−1)𝑛

𝑛!
𝛁(𝑛)𝑔(𝑹)⊙

(

𝒙𝑖 − 𝒔𝐵 − 𝜟
)(𝑛), (16)

here a remainder of order (𝑟max,𝐴+𝑟max,𝐵)𝑝+1∕𝑅𝑝+1 has been discarded.
n this expression, the 𝑛th order tensor 𝛁(𝑛)𝑔(𝑹) is the 𝑛th gradient of
1∕𝑅 defined recursively as

∇(0)𝑔(𝑹) = 𝑔(𝑹) and
(

𝛁(𝑛)𝑔(𝑹)
)𝑖1 ,𝑖2 ,…,𝑖𝑛= 𝜕

𝜕𝑅𝑖𝑛

(

𝛁(𝑛−1)𝑔(𝑹)
)𝑖1 ,𝑖2 ,…,𝑖𝑛−1 , (17)

ith (𝑖1, 𝑖2,… , 𝑖𝑛) ∈ {1, 2, 3}𝑛 and 𝑹 = (𝑅1, 𝑅2, 𝑅3). The quantity
𝒙𝑖 − 𝒔𝐵 − 𝜟

)(𝑛) is the 𝑛-fold outer product of the vector 𝒙𝑖 − 𝒔𝐵 − 𝜟
ith itself. The inner and outer product of two tensors are defined

espectively as
(

𝑻 (𝑛)
1 ⊙ 𝑻 (𝑛−𝑘)

2

)𝑖1 ,𝑖2 ,…,𝑖𝑘
=

∑

1≤𝑗1 ,…,𝑗𝑛−𝑘≤3
𝑇 𝑖1 ,…,𝑖𝑘 ,𝑗1 ,…,𝑗𝑛−𝑘
1 𝑇 𝑗1 ,…,𝑗𝑛−𝑘

2 , (18)

nd
(

𝑻 (𝑘)
1 ⊗ 𝑻 (𝑛−𝑘)

2

)𝑖1 ,𝑖2 ,…,𝑖𝑛
= 𝑇 𝑖1 ,…,𝑖𝑘

1 𝑇 𝑖𝑘+1 ,…,𝑖𝑛
2 . (19)

f we define the 𝑛th multipole moment of cell 𝐵 as the 𝑛th order tensor
(𝑛)
𝐵 (𝒔𝐵) =

∑

𝑖∈𝐵
𝜇𝑖

(

𝒙𝑖 − 𝒔𝐵
)(𝑛) , (20)

hen Eqs. (14) and (16) yield

(𝒙) =
𝑝
∑

𝑛=0

(−1)𝑛

𝑛!
𝛁(𝑛)𝑔(𝑹)⊙𝑴 (𝑛)

𝐵 (𝒔𝐵 + 𝜟). (21)

The idea is to expand 𝑴 (𝑛)
𝐵 (𝒔𝐵 + 𝜟) as to make appear the multipole

oments 𝑴 (𝑛)
𝐵 (𝒔𝐵). However, since 𝒔𝐵 and 𝜟 do not commute (𝒔𝐵⊗𝜟 ≠

⊗ 𝒔𝐵 in general), such expansion is not given by Newton’s binomial.
e can however use the symmetry of tensor 𝛁(𝑛)𝑔(𝑹) to get around

his difficulty. We say that a tensor 𝑻 (𝑛) is symmetrical if, for any
ermutation 𝜎 of {1, 2,… , 𝑛}, we have
𝑖1 ,…,𝑖𝑛 = 𝑇 𝑖𝜎(1) ,…,𝑖𝜎(𝑛) . (22)

ue to Schwarz rule, 𝛁(𝑛)𝑔(𝑹) is symmetrical and we have (this is easily
erified from Eqs. (18) and (19))
(𝑛)𝑔(𝑹)⊙𝑴 (𝑛)

𝐵 (𝒔𝐵 + 𝜟) =

(𝑛)𝑔(𝑹)⊙

( 𝑛
∑

𝑚=0
(−1)𝑚

(

𝑛
𝑚

)

𝜟(𝑚) ⊗𝑴 (𝑛−𝑚)
𝐵 (𝒔𝐵)

)

,
(23)

9 This is the approximation made by Barnes and Hut (1986) in their original
escription of the standard tree code, corresponding to 𝑝 = 1 in Eq. (25).
10 We use here the sign convention 𝒙̈ = ∇𝜙(𝒙), in order to have ∇𝒔𝐴𝑪

(𝑚−1) =
(𝑚) in Eq. (25).
 i

6 
although Eq. (23) cannot be simplified by 𝛁(𝑛)𝑔(𝑹). Using Eq. (23) and
the equality

𝑻 (𝑛)
1 ⊙

(

𝑻 (𝑚)
2 ⊗ 𝑻 (𝑛−𝑚)

3

)

= 𝑻 (𝑛)
1 ⊙ 𝑻 (𝑚)

2 ⊙ 𝑻 (𝑛−𝑚)
3 (24)

for any symmetrical tensors 𝑻 (𝑛)
1 , 𝑻 (𝑚)

2 and 𝑻 (𝑛−𝑚)
3 , Eq. (14) can be

written (Warren and Salmon, 1995)

𝜙(𝒙) =
𝑝
∑

𝑚=0

1
𝑚!

𝜟(𝑚) ⊙ 𝑪 (𝑚)(𝒔𝐴),

(𝑚)(𝒔𝐴) =
𝑝−𝑚
∑

𝑛=0

(−1)𝑛

𝑛!
𝛁(𝑛+𝑚)𝑔(𝑹)⊙𝑴 (𝑛)

𝐵 (𝒔𝐵).
(25)

The tensors 𝑪 (0), 𝑪 (1) and 𝑪 (2) are respectively the gravitational poten-
tial, the acceleration and the tidal tensor at 𝒔𝐴 due to the gravity of
cell 𝐵. More generally, the 𝑪 (𝑚) are the interaction tensors due to the
gravity of cell 𝐵 on the center of mass 𝒔𝐴 of cell 𝐴.

In the standard tree code (Section 3.4.4), instead of computing
interactions between cells, we compute interactions between a cell 𝐵
and a moonlet well-separated11 from 𝐵 at location 𝒙. In that case,
nstead of 𝑹 = 𝒔𝐴 − 𝒔𝐵 , we take 𝑹 = 𝒙 − 𝒔𝐵 and we only compute
(1) in Eq. (25), since we are only interested in the acceleration of the
oonlet.

In falcON, once the 𝑪 (𝑚) due to interactions between cells of the tree
ave been accumulated by the tree walk (described in Section 3.4.5),
hey are passed down and accumulated by the descendants until reach-
ng the moonlets. Since the children are not located at the expansion
enter 𝒔0 of their parent, their parent’s 𝑪 (𝑚) are translated to their own
xpansion center 𝒔1 (or position if the child is a moonlet). Using the
quality ∇𝒔0𝑪

(𝑚−1)(𝒔0) = 𝑪 (𝑚)(𝒔0), this is done via a 𝑝th order Taylor
xpansion12

(𝑚)(𝒔1) =
𝑝−𝑚
∑

𝑛=0

1
𝑛!
∇(𝑛)
𝒔0
𝑪 (𝑚)(𝒔0)⊙

(

𝒔1 − 𝒔0
)(𝑛)

=
𝑝−𝑚
∑

𝑛=0

1
𝑛!
𝑪 (𝑚+𝑛)(𝒔0)⊙

(

𝒔1 − 𝒔0
)(𝑛) .

(26)

This tree descent is performed from the root cell. Once a cell has
accumulated the 𝑪 (𝑚) of its parent, it transmits its own 𝑪 (𝑚) to its
children using Eq. (26), until the leaves have received the 𝑪 (𝑚) from
all of their ancestors. Then the accelerations 𝑪 (1) of the moonlets are
computed from the 𝑪 (𝑚) of their parent leaf using Eq. (26) (Dehnen,
002, Sect. 3.2.2).

In the parameter file of NcorpiN, the user chooses the desired
xpansion order 𝑝 used for the multipole expansion in falcON or in the
tandard tree code (if the user wants to use a tree-based method for
utual interactions). In the original description of falcON by Dehnen

2002), 𝑝 was three, whereas 𝑝 was one in the original description of
he standard tree code by Barnes and Hut (1986). NcorpiN allows

expansion orders up to 𝑝 = 8. Since the expansion center is the center of
ass, the dipole 𝑴 (1) vanishes by construction. Therefore, orders 𝑝 = 1

nd 𝑝 = 2 are identical for the standard tree code, since only 𝑪 (1) is ever
omputed in this case. However, order 𝑝 = 1 and 𝑝 = 2 are different for
alcON, and the precision increases as 𝑝 increases (see Fig. 4).

In practice in NcorpiN, when using falcON, we treat the interac-
ion of cell 𝐵 on cell 𝐴 at the same time as we treat the interaction of
ell 𝐴 on cell 𝐵. The advantages of doing so are two-folds. First, we can
ake advantage of the relations

𝐴𝑪
(𝑝)
𝐵→𝐴 = (−1)𝑝𝑀𝐵𝑪

(𝑝)
𝐴→𝐵 ,

𝐴𝑪
(𝑝−1)
𝐵→𝐴 = (−1)𝑝−1𝑀𝐵𝑪

(𝑝−1)
𝐴→𝐵 ,

(27)

o speed up the algorithm. Second, doing so ensures that the total
omentum is preserved up to machine precision, since Newton’s third

11 The well-separation in that case is defined as |

|

𝒙 − 𝒔𝐵 || ≥ 𝑟crit,𝐵 .
12 There is a sign error in Eq. (8) of Dehnen (2002), where 𝒔0 − 𝒔1 is written

nstead of 𝒔 − 𝒔 .
1 0
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Fig. 4. Distribution of the relative errors of the moonlets’ accelerations with our implementation of falcON. These distributions were computed with 𝑁 = 106 moonlets in a disk
whose characteristics are given in the text. The accelerations only consider the disk’s self gravity, not the interaction with a central mass. The relative errors are similar with the
standard tree code.
law is verified. Therefore, FalcON preserves the total momentum while
the standard tree code does not. A speed up is also achieved by noticing
that the highest order multipole moment 𝑴 (𝑝) only affects 𝑪 (0) in
Eq. (25). Furthermore, in Eq. (26), 𝑪 (𝑚)(𝒔1) is only affected by 𝑪 (𝑘)(𝒔0)
for 𝑘 ≥ 𝑚. Since we are only interested in computing the accelerations
of the moonlets, 𝑪 (0) never has to be computed for any cell, and as a
consequence, the highest order multipole moment 𝑴 (𝑝) is never used
and does not have to be computed when climbing the tree.

Another significant speed up comes from the fact that all the
manipulated tensors are symmetrical in the sense of Eq. (22). In
three-dimensional space, a symmetrical tensor of order 𝑛 only has
(𝑛 + 1) (𝑛 + 2) ∕2 independent components out of the possible 3𝑛. In
NcorpiN, order 𝑛 tensors are therefore stored in an array of size
(𝑛 + 1) (𝑛 + 2) ∕2, and to compute them, we only compute that many dis-
tinct quantities. Similarly, when computing the inner product
𝑻 (𝑛)
1 ⊙ 𝑻 (𝑛−𝑘)

2 , the total number of multiplications can be reduced from
3𝑛 down to only 1

4 (𝑘 + 1) (𝑘 + 2) (𝑛 − 𝑘 + 1) (𝑛 − 𝑘 + 2) using the symme-
try of the tensors.

The choice of the expansion order 𝑝 is an obvious parameter affect-
ing the precision of the expansion. Another parameter is how large the
critical radius 𝑟crit of a cell is, determined by Eq. (12). In the parameter
file of NcorpiN, the user chooses the value of 𝜃min, corresponding
to the ratio 𝑟max∕𝑟crit of the root cell. Then, this same ratio for the
descendants of the root cell is determined by Eq. (13) of Dehnen (2002).
Sensible values are 0.2 ≤ 𝜃min ≤ 0.8, and highest precisions are achieved
with small values. In the standard tree code, a common practice is to
consider the same 𝜃 for all cells, but here, we consider a 𝜃 dependent on
the cell’s mass for both falcON and the standard tree code as it speeds
up the code for the same precision.
7 
In Fig. 4, we plot the distribution of the relative error
|

|

|

𝒂𝑗 − 𝒂̄𝑗
|

|

|

1
𝑁

∑

1≤𝑘≤𝑁 𝑎̄𝑘
, (28)

where 𝒂𝑗 is the acceleration of moonlet 𝑗 computed with our imple-
mentation of falcON, whereas 𝒂̄𝑗 is its true acceleration, computed in a
brute-force way. In this figure, the opening angle 𝜃min ∈ {0.25, 0.5, 0.75}
and the expansion order 𝑝 goes from 1 to 8. For the distributions in
Fig. 4, we considered 𝑁 = 106 bodies in a disk with semi-major axes
2𝑅⊕ ≤ 𝑎 ≤ 32𝑅⊕, eccentricities 0 ≤ 𝑒 ≤ 0.2 and inclinations 0 ≤ 𝑖 ≤ 20◦.
All 106 bodies had random masses for a total mass 0.01𝑀⊕. The angles
𝑀,𝜔,𝛺 were chosen at random in [0, 2𝜋[.

The accelerations considered in Eq. (28) are only between moonlets
of the disk, not between the moonlets and the Earth. Because the Earth
is out of the octree and the acceleration with it is computed directly and
without error, the actual relative errors are two orders of magnitude
less than what is shown in Fig. 4, which corresponds to a disk without a
central mass (for example a galaxy, or a collection of nodes representing
a single viscoelastic body).

While Fig. 4 associates a precision with some choices of the pair
(

𝑝, 𝜃min
)

, it does not indicates the corresponding running time or the
optimal subdivision threshold 𝑠 and cannot be used in itself by a user
of NcorpiN to choose the right set of parameters

(

𝑝, 𝑠, 𝜃min
)

for falcON.
In Appendix D, we solve this issue by providing a complete overview of
the performances (running time and precision) of falcON depending on
the set of parameters

(

𝑝, 𝑠, 𝜃min
)

. The user can use Table D.3 to choose
the best parameters depending on precision needs.
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procedure StandardTree(moonlet 𝑎, cell 𝐵)
𝑁𝑏 ← number of moonlets in cell 𝐵
if 𝑁𝑏 < 𝑁cb,pre then

Treat the interaction between moonlet 𝑎 and cell 𝐵 brute-
forcely

else if 𝑎 is well-separated from 𝐵 then
Accumulate 𝑪 (1) of moonlet 𝑎 or Do nothing.

else if 𝑁𝑏 < 𝑁cb,post or 𝐵 is a leaf then
Treat the interaction between moonlet 𝑎 and cell 𝐵 brute-

forcely
else

for all child node 𝑏 of 𝐵 do
StandardTree(𝑎, 𝑏)

3.4.4. Standard tree code
We provide with algorithm StandardTree our implementation of the

standard tree code first described by Barnes and Hut (1986). When
an instruction differs according to whether the algorithm is used for
mutual gravity computation of collision search, the instruction relative
to gravity is given first in regular font, followed by the instruction
relative to collision search in italic font. To treat the interactions
between all the moonlets, the procedure StandardTree is called with
argument (moonlet 𝑘, root cell) 𝑁 times in a for loop going over all
the moonlets once. Each call to the function is resolved in time (ln𝑁),
hence the overall (𝑁 ln𝑁) time complexity. The thresholds 𝑁cb,pre
and 𝑁cb,post are parameters chosen by the user. Possible values are
discussed in Section 4.

3.4.5. FalcON: An efficient tree walk

We give with the algorithm TreeWalk the tree walk procedure of
falcON algorithm used after the tree climbing and before the tree
descent. When a line has both regular font and italic font, only one
of the two instructions is performed. The instruction in regular font
is performed if falcON is used for gravity computation, whereas the
instruction in italic font is applied if it is used for collision detection.
Once the tree climbing is done, the tree walk procedure is called once
with argument (root cell, root cell). When falcON is used for collision
detection, the algorithm terminates after the tree walk. When it is
used for mutual gravity computation, a tree descent stage, explained
is Section 3.4.3, is performed after the tree walk. The thresholds 𝑁cs,
𝑁cc,pre and 𝑁cc,post are indicated by the user in the parameter file of
NcorpiN. Possible values are discussed in Appendix D.

In practice in NcorpiN, the functions TreeWalk and StandardTree
are not coded recursively. Instead, we store in a stack the cell–cell inter-
actions yet to be performed (cell-body interactions for the standard tree
code) and these functions are more efficiently implemented iteratively.

3.4.6. Peano–Hilbert order and cache efficiency
The practical construction of a tree generally involves a structure

containing relevant informations for the current cell (number of chil-
dren, mass, multipole moments, etc ⋯), and pointers towards the
children nodes, that can be either NULL or contain the address in
memory of a child. Such a construction is easy to implement but yields
poor memory locality (children have no reason to be next to each
other in memory) and traveling in the tree requires multiple pointer
dereferences. These issues are responsible for many cache misses and
the processor wastes a lot of clock cycles waiting for data in memory.

A much better implementation can be achieved by storing the tree
in a regular array, preferably in such a way that children are contiguous
in memory, and such that cells close in space are likely to be close in
memory, for cache efficiency. To this aim, we need to order the cells of
the tree. Some authors (e.g. Malhotra and Biros, 2015) use the Morton
8 
Fig. 5. Hilbert order of all the cells of the tree of Fig. 2. The Hilbert order of a cell
is written in its middle. Cells empty of moonlet do not exist and are not assigned an
order. In practice, this tree would be stored in an array indexed from 0 to 100.

order, or Z-order. The main issue with this order is that cells close by
Morton order can be far away in 3D space. Instead, and like Dehnen’s
implementation of falcON,13 we use the space filling curve discovered
by David Hilbert. At a given generation (or level) in the tree, cells
are ordered according to a three-dimensional version of Hilbert’s 1891
space filling curve, skipping non-existing cells. Unlike Morton order,
Hilbert order has the nice property that cells close by Hilbert order are
always close in 3D space, although the converse is false. For illustration
purposes, we show this order in two dimensions in Fig. 5 for the tree
presented in Fig. 2. For two cells 𝐴 and 𝐵, the order that we define
verifies the following properties

• If level(𝐴) > level(𝐵) then order(𝐴) > order(𝐵).
• If order(𝐴) > order(𝐵) then for all child 𝑎 of 𝐴 and 𝑏 of 𝐵,

order(𝑎) > order(𝑏).

However, when building the tree, its final structure as well as the
number of cells it contains are still unknown and it is not possible
to build the tree in a regular array. Therefore, we use the general
representation based on pointers to build the tree. Then, the final tree
is copied in an array indexed by Hilbert order, hereafter called the
flat tree, and the tree is freed. FalcON algorithm (climbing, walk and
descent) and the standard tree code (climbing and standard tree) are
performed on the flat tree.

Instead of putting the moonlets in the tree in a random order, an
impressive speed-up for the tree building can be achieved by putting
the moonlets in the Hilbert order of the previous timestep. We define
the Hilbert order of a moonlet as the Hilbert order of its parent leaf.
When the moonlets are put in the tree in the Hilbert order of the
previous timestep, a spacial coherence is maintained during the tree
construction, increasing the probability that the data needed by the
processor are already loaded in the cache, and reducing cache misses.
In Table 1, we give the time taken by our CPUD.3 to build the tree when
the moonlets are added in the tree in random order and when they are

13 From personal communications.
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procedure TreeWalk(cell 𝐴, cell 𝐵) ⊳ Called once on (root, root)
(𝑁𝑎, 𝑁𝑏) ← number of moonlets in cells 𝐴 and 𝐵
if 𝐴 = 𝐵 then ⊳ Self interaction

if 𝑁𝑎 ≤ 𝑁cs or 𝐴 is a leaf then
Treat the interaction of cell 𝐴 with itself brute-forcely. ⊳ Compute gravity or search collisions for all pairs

else
for all pairs (𝑎, 𝑏) of children of 𝐴 do ⊳ Up to 36 such pairs

TreeWalk(𝑎, 𝑏)
else ⊳ Interaction between different cells

if 𝑁𝑎𝑁𝑏 < 𝑁cc,pre then
Treat the interaction between cell 𝐴 and cell 𝐵 brute-forcely.

else if 𝐴 and 𝐵 are well-separated then
For 1 ≤ 𝑛 ≤ 𝑝, accumulate 𝑪 (𝑛) for cells 𝐴 and 𝐵 (Eq. (25)) or Do nothing. ⊳ No collision possible

else if 𝑁𝑎𝑁𝑏 < 𝑁cc,post or both 𝐴 and 𝐵 are leaves then
Treat the interaction between cell 𝐴 and cell 𝐵 brute-forcely.

else if 𝑟crit,𝐴 > 𝑟crit,𝐵 or 𝐵 is a leaf then ⊳ Subdividing 𝐴
for all child node 𝑎 of 𝐴 do

TreeWalk(𝑎, 𝐵)
else ⊳ Subdividing 𝐵

for all child node 𝑏 of 𝐵 do
TreeWalk(𝐴, 𝑏)
Table 1
Time (in seconds) needed to build the tree as a function of the number of moonlets 𝑁 .

hen moonlets are added in random order, the tree building takes up to a factor 3.5
onger than when they are added in the Hilbert order of the previous timestep. The
ubdivision threshold is 𝑠 = 26 and the moonlets are distributed between 𝑟 = 2.9𝑅⊕
nd 𝑟 = 12𝑅⊕.

𝑁 210 214 218 222 226

Random order 75 10−6 19 10−4 0.049 1.5 45
Hilbert order 28 10−6 7.1 10−4 0.033 0.65 13
Speed-up factor 2.7 2.7 1.5 2.3 3.5

added in the Hilbert order of the previous timestep. The procedure to
build the tree is exactly the same in both cases, yet, cache-efficiency
makes the building procedure two to three times faster.

In their implementation of the standard tree code in REBOUND
(Rein and Liu, 2012), the authors do not rebuild the tree from scratch at
each timestep, but instead update it by locating moonlets that left their
parent leaf. In NcorpiN, we prefer to build the tree from scratch at
ach timestep, but subsequent builds are two to three times faster than
he first build thanks to Hilbert order. The authors of REBOUND do not
ention the speed-up they achieved with their update procedure, and

t is unknown which method is best.

. Numerical performances of NcorpiN

4.1. Numerical integration

In the parameter file of NcorpiN, the user chooses how moonlets
interact (through collisions, mutual gravity, both of them or none of
them). In case of interactions, the user also chooses how interactions
should be treated (either brute-forcely, with the mesh algorithm, with
falcON, or with the standard tree code). If the mesh-algorithm is
used, then only mutual gravity with the neighboring moonlets and
with the three largest moonlets are taken into account. All other long
range gravitational interactions between moonlets are discarded. This
is generally a poor approximation, unless the three largest moonlets
account for the majority of the total moonlet mass. If either falcON
or the standard tree code is used, then long range mutual gravity is
considered, with a precision depending on 𝑝 and 𝜃min (See Fig. 4 and
Table D.3).

We use a Leapfrog integrator to run the numerical simulations.

Depending on the method chosen for mutual interaction treatment,

9 
NcorpiN uses either a 𝑆𝐴𝐵𝐴1 (half drift + kick + half drift) or
𝑆𝐵𝐴𝐵1 (half kick + drift + half kick) symplectic integrator14 (Laskar
and Robutel, 2001). When outputs do not occur at every timestep (this
is generally the case for a long simulation), time is saved by combining
the last step of a timestep with the first step of the next timestep, since
they are identical. For example, the 𝑆𝐴𝐵𝐴1 integrator takes in that case
the form half drift + kick + drift + kick + drift + ⋯, until an output has
to occur. When an output occurs, the last drift is undone by half (on a
copy of the simulation, as to not interfere with it) and the simulation’s
state is written to file. Similar considerations are valid for the 𝑆𝐵𝐴𝐵1
integrator. Collisions are searched and resolved during the drift phase,
whereas mutual gravity is computed during the kick phase.

As with any other integrator, the Leapfrog only approximates the
equations of motions. The main consequence of the approximation
is a steady precession of the periapsis of the orbits over time. We
thoroughly analyze the Leapfrog integrator in an analytical manner in
Appendix E.

4.2. Performances

In order to test the performances of NcorpiN, we ran numerical
simulations with both collisions and mutual gravity, for different values
of the number of moonlets 𝑁 . In order for 𝑁 to be constant during
a simulation, we resolved the collisions elastically. We measured the
time taken by our CPU15 to run one timestep (averaged over the first
eight timesteps) with each of the four mutual interaction management
modules (brute-force, falcON, standard tree code and mesh algorithm),
each with the exact same initial conditions for a given 𝑁 . We also ran
the same simulations with Rein and Liu’s REBOUND software in order
to compare NcorpiN with REBOUND. Only the brute-force method
and the standard tree code (up to 𝑝 = 3) are implemented in REBOUND
and we only tested these modules for REBOUND. In Fig. 6, we show the
results of our tests for 27 ≤ 𝑁 ≤ 225.

The runs with a tree-based method (falcON or the standard tree
code) were performed with 𝜃min = 0.5 (𝜃 = 0.5 for REBOUND, which
uses a constant 𝜃). With a central mass 100 times more massive than
the rest of the moonlets, this leads to a relative error in the acceleration

14 Whichever is faster for the given mutual interaction management method.
15 Clock : ∼ 4.5 GHz. Cache L1, L2, L3 : 80 KB, 1.25 MB, 24 MB. RAM : 32

GB DDR5 4800 MT/s.
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Fig. 6. Time (in seconds) taken by our CPU to run one timestep (kick + drift or drift + kick), as a function of the number 𝑁 of moonlets. For clarity, the times are divided
by 𝑁 . The 𝑁 moonlets were given initial semi-major axes between 𝑟 = 2.9𝑅⊕ and 𝑟 = 12𝑅⊕, eccentricities between 0 and 0.2, and inclinations between 0◦ and 10◦. The mean
anomaly, argument of pericenter and longitude of the ascending node were distributed uniformly between 0 and 2𝜋. All simulations were run with the same materialD.3, in the
same conditions (all processor cores were idle except the one running).
of the moonlets of the order of ∼ 10−4.73 when 𝑝 = 3 and ∼ 10−6.49

when 𝑝 = 6 (see Table D.3). The subdivision threshold 𝑠 is the main
parameter (not precision altering) influencing the speed of the tree-
based methods. The optimal value of 𝑠 was used for falcON, according
to Table D.3. We also used 𝑠 = 102 for the standard tree code with
𝑝 = 3, as it appeared to be optimal16 with our materialD.3. For falcON,
the parameters

(

𝑁cs, 𝑁cc,pre, 𝑁cc,post
)

were those of Appendix D. Refer
to Table D.3 for a parameter analysis.

With the brute-force method, NcorpiN and REBOUND turn out
to run almost equally as fast (solid black and dashed purple curve
in Fig. 6). REBOUND being slightly slower than NcorpiN can easily
be attributed to the versatility of REBOUND, which requires larger
data structures and increases the likelihood of a cache miss. On both
softwares, the brute-force method is slower than any other method for
𝑁 ≥ 28.

FalcON on NcorpiN turns out to be three to ten times faster than
the standard tree code (blue and green curve in Fig. 6). Even with
𝑝 = 6 (red curve), falcON is still faster than the standard tree code
with 𝑝 = 3, while also being two orders of magnitudes more precise.
Our implementation of the standard tree code is also faster than that
of REBOUND (2.76 times faster for 𝑁 = 223), which can be attributed to
NcorpiN using a mass dependent opening angle 𝜃 (Dehnen, 2002, Eq.
(13)), whereas REBOUND uses a constant 𝜃. For the same precision,
NcorpiN with falcON runs 25 times faster than REBOUND with the
standard tree code when 𝑁 = 223 (solid blue and dashed yellow curves).

Without much surprise, the mesh algorithm turns out to be the
fastest method of all on NcorpiN for 𝑁 ≤ 224, mainly due to the
simplicity of its implementation. This comes at the cost of a much
worse precision on the acceleration of the moonlets, since long-range
gravity is ignored (unless if with one of the three largest moonlets).
The dramatic increase in the running time of the method for 𝑁 ≥ 222

is due to the fact that it is impossible to keep constant the average
number of neighbors past a certain value of 𝑁 . Indeed, the mesh-size
𝛾 is attributed a minimal value to prevent the whole mesh grid (whose

16 Optimal only if the same tree is used for collision detection and mutual
gravity computation. See footnote 3.4.1.
10 
number of cells is constant and chosen by the user) to shrink below a
certain threshold (also chosen by the user). Above this value for 𝑁 ,
the average number of neighbors increases linearly instead of being
constant, and the mesh algorithm behaves in 

(

𝑁2). Therefore, falcON
should be preferred to the mesh algorithm if no moonlet account for the
majority of the moonlet mass, or if 𝑁 is too large. FalcON should always
be preferred to the standard tree code. Although the mesh algorithm
is faster than falcON over a full timestep due to its simplistic way of
handling gravity, falcON outperforms the mesh algorithm for the drift
phase, since collision search is faster with falcON.

In Fig. 6, a (𝑁) algorithm would have a constant curve. Therefore,
none of the four mutual interaction management modules of NcorpiN
is strictly (𝑁) (although falcON is really close to it for 𝑁 ≥ 219,
especially at order 6). Indeed, even if an algorithm is (𝑁) in the total
number of operations, when implemented on an actual CPU, the limited
size of the cache is such that the proportion of cache misses increases
with 𝑁 . As a consequence, the proportion of clock cycles that the CPU
spends waiting for data increases with 𝑁 and the time complexity ends
up being slightly worse than (𝑁).

5. Resolving collisions

NcorpiN provides several built-in ways in which collisions should
be resolved. In the parameter file, the user can decide that all collisions
are resolved elastically (hard-sphere collision without loss of energy),
inelastically (hard-sphere collision with loss of energy), by merging
the colliding moonlets together, or with the fragmentation model of
NcorpiN, detailed in Section 5.3.4.

In this section, we consider the collision between two moonlets of
masses 𝑚1 and 𝑚2 and radii 𝑅1 and 𝑅2. The positions and velocities of
the moonlets, at the instant of the impact, are denoted by 𝒓1, 𝒓2, 𝒗1 and
𝒗2. We also denote

𝛥𝒓 = 𝒓1 − 𝒓2 and 𝛥𝒗 = 𝒗1 − 𝒗2. (29)

In a general fashion, we refer to the largest moonlet as the target
(hereafter moonlet 2) and to the smallest one as the impactor (hereafter
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moonlet 1). The impact angle is defined as17

= arcsin
(

𝑏
𝑅1 + 𝑅2

)

= arccos
√

1 − 𝑏2
(

𝑅1 + 𝑅2
)2

, (30)

here 𝑏 ≤ 𝑅1 + 𝑅2 is the impact parameter. We denote 𝑀 = 𝑚1 + 𝑚2
he total colliding mass. The density of the impactor is 𝜌1 while that of

the target is 𝜌2.

5.1. Elastic collisions

We say that a collision is elastic if it conserves both energy and
momentum. Let 𝒗′1 and 𝒗′2 be the moonlets velocities after the impact.
If we write

𝒗′1 − 𝒗1 = − 𝑱
𝑚1

and 𝒗′2 − 𝒗2 =
𝑱
𝑚2

, (31)

then it is immediate to verify that the total momentum is conserved,
whatever the vector 𝑱 . Let us write

𝑱 = 𝛼el (𝛥𝒓 ⋅ 𝛥𝒗)𝛥𝒓, (32)

where 𝛼el is a real number. The scalar product 𝛥𝒓 ⋅ 𝛥𝒗 traduces the
iolence of the impact, in the sense that, for a grazing collision, 𝛥𝒓⋅𝛥𝒗 =

0, while for a frontal collision, it reaches an extremum 𝛥𝒓 ⋅𝛥𝒗 = −𝛥𝑟𝛥𝑣.
The variation of kinetic energy 𝛥𝐸 at the impact reads

𝛥𝐸 = 𝛼el (𝛥𝒓 ⋅ 𝛥𝒗)2
(

𝑚1 + 𝑚2
2𝑚1𝑚2

𝛼el𝛥𝑟
2 − 1

)

. (33)

t the impact, we have 𝛥𝑟 = 𝑅1 +𝑅2 and the elasticity of the collision
eads

el =
2𝑚1𝑚2

(

𝑚1 + 𝑚2
) (

𝑅1 + 𝑅2
)2

. (34)

5.2. Inelastic collisions

The results of Section 5.1 suggest a very straightforward model for
non-elastic collisions. We simply write 𝑱 = 𝛼 (𝛥𝒓 ⋅ 𝛥𝒗)𝛥𝒓, and if we
choose for 𝛼 a non-zero value different from 𝛼el, then the collision in
inelastic. Let us write

𝛼 =
𝑓𝑚1𝑚2

(

𝑚1 + 𝑚2
) (

𝑅1 + 𝑅2
)2

=
𝑓
2
𝛼el, (35)

here 𝑓 ∈ R. Then the variation in kinetic energy due to the impact
eads

𝐸 = 2𝑓 (𝑓 − 2)
𝑚1𝑚2

𝑚1 + 𝑚2
cos2 𝜃𝛥𝑣2. (36)

To prevent an energy increase, we must consider 0 ≤ 𝑓 ≤ 2. The
ondition that the two moonlets gets farther away from each other after
he impact reads 𝛥𝒗′ ⋅ 𝛥𝒓 ≥ 0. We have

𝛥𝒗′ ⋅ 𝛥𝒓 = (1 − 𝑓 ) (𝛥𝒗 ⋅ 𝛥𝒓) , (37)

nd so we take 𝑓 ≥ 1 to prevent the moonlets from getting closer after
he collision. NcorpiN’s model for non-merging and non-fragmenting
ollisions thus relies on the parameter 𝑓 (indicated by the user in the
arameter file of NcorpiN), bounded by 1 ≤ 𝑓 ≤ 2, such that values
f 𝑓 close to 2 correspond to almost elastic collisions, whereas values
lose to 1 correspond to very inelastic collisions.

.3. Fragmentation and merging

Previous studies of Moon formation (e.g. Ida et al., 1997, Salmon
nd Canup, 2012) disregard the fact that, upon a violent collision,
oonlets may fragment instead of just merging or bouncing back. We

ely here on the existing literature about impacts and crater scaling for
he velocities and sizes of the fragments in order to achieve a realistic
odel of fragmentation.

17
ϙ is an archaic Greek letter called qoppa.
11 
5.3.1. Velocity distribution
We follow the impact model of Holsapple and Housen (1986)

and Housen and Holsapple (2011), based on dimensional analysis. We
first constrain the ejection velocity 𝑣 as a function of the distance 𝑥
from the impact site. Then we constrain the velocity distribution of the
fragments resulting from the impact. Let 𝑣(𝑥) be the ejection velocity at
a distance 𝑥 from impact and 𝑀⋆(𝑣) ∶= 𝑀⋆ be the mass of fragments
jected with a velocity greater than 𝑣. We assume the two following
ypothesis:

• The region of the target where material is ejected due to the
impact is large enough for the impactor to be considered point-
mass.18

• The impact is violent enough to overcome both the gravity of the
target and the strength of its material.

he first hypothesis clearly implies that the target is much larger than
he impactor,19 and as a consequence, the outcome of the collision does
ot depend on the target radius 𝑅2. The second hypothesis implies
hat 𝑀⋆(𝑣) and 𝑣(𝑥) do not depend on the surface gravity of the
mpactor, nor on the strength of its material. Another consequence of
he first hypothesis is that the outcome of the impact depends on the
mpactor through a unique scalar quantity, called coupling parameter
nd defined as20

= 𝑅1 (𝛥𝑣 cos ϙ)𝜇 𝜌𝜈1. (38)

he exponent 𝜇 was constrained for a wide range of material assuming
he accepted value21 𝜈 = 0.4 and is given in Table 3 of Housen and
olsapple (2011). For a non-porous target, we have 𝜇 = 0.55 whether

t is liquid or solid, whereas 𝜇 = 0.41 for a rubble-pile or sand-covered
arget. The value of 𝜇 is to be indicated by the user of NcorpiN if the

built-in fragmentation model is used. According to these assumptions,
there exists a functional dependency of the form

𝑣 = 𝑓 (𝐶, 𝜌2, 𝑥), (39)

that is re-written using the 𝜋-theorem and Eq. (38) as (Housen and
Holsapple, 2011)

𝑣
𝛥𝑣

= 𝐶1

[

𝑥
𝑅1

(

𝜌2
𝜌1

)𝜈]−1∕𝜇

. (40)

The constant 𝐶1 was determined from fit to data by Housen and
olsapple (2011). They provide possible values in their Table 3. For a
on-porous target, we have 𝐶1 = 1.5 (solid or liquid), whereas 𝐶1 = 0.55
or a rubble-pile or sand-covered target. We proceed similarly to obtain

⋆(𝑣). There exists a functional dependency of the form
⋆ = 𝑓 (𝐶, 𝜌2, 𝑣), (41)

hat the 𝜋-theorem transforms into
𝑀⋆𝑣3𝜇𝜌3𝜈−12

𝐶3
= 𝑘𝐶3𝜇

1 , (42)

and then using Eq. (38) (Suetsugu et al., 2018, Sect. 5)

𝑀⋆(𝑣)
𝑚1

= 3𝑘
4𝜋

(

𝐶1𝛥𝑣 cos ϙ
𝑣

)3𝜇 (𝜌1
𝜌2

)3𝜈−1
. (43)

The constant 𝑘 is also provided by Table 3 of Housen and Holsapple
(2011). For a non-porous target, we have 𝑘 = 0.2 (resp. 𝑘 = 0.3) for
a liquid (resp. solid) target. For a rubble-pile or sand-covered target,

18 This assumption is not verified for low-velocity impacts, but the moonlets
merge instead of fragmenting in this case.

19 We stress that fragmentations are poorly resolved in NcorpiN when the
target and impactor are roughly of the same size.

20 Suetsugu et al. (2018) consider oblique impacts by replacing the usual 𝛥𝑣
by 𝛥𝑣 cos ϙ, where ϙ is the impact angle.

21
 See footnote 5 of Housen and Holsapple (2011).
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𝑘 = 0.3. The constants 𝜇, 𝜈, 𝑘 and 𝐶1 are chosen by the user in the
parameter file of NcorpiN.

Eq. (40) predicts infinitely large ejection velocities for arbitrarily
small 𝑥 and is not verified for values of 𝑥 smaller than the impactor
radius 𝑅1, where material is driven down the surface instead of being
ejected. Therefore, there exists a maximal ejection velocity given by
(Quillen et al., 2024)

𝑣max = 𝑣(𝑅1) = 𝐶1𝛥𝑣
(

𝜌1
𝜌2

)𝜈∕𝜇
. (44)

Similarly, Eq. (43) must be modified to account for the fact that
𝑀⋆(𝑣max) = 0. Following Housen and Holsapple (2011), we rewrite
it as

𝑀⋆(𝑣)
𝑚1

= 3𝑘
4𝜋

𝜌2
𝜌1

(cos ϙ)3𝜇
[

(

𝐶1𝛥𝑣
𝑣

)3𝜇 (𝜌1
𝜌2

)3𝜈
− 1

]

. (45)

5.3.2. Mass of the largest fragment
Following Suetsugu et al. (2018), we define the ejected mass 𝑚̌ as

the mass unbounded to the largest fragment. That is, we write

𝑚̌ = 𝑀⋆(𝑣esc), (46)

where

𝑣esc =
√

2𝑀
𝑅

and 𝑅 =
(

3𝑀
4𝜋𝜌

)1∕3
, (47)

nd 𝜌 is the averaged density. The mass 𝑚̃ of the largest fragment
s simply given by 𝑚̃ = 𝑀 − 𝑚̌ and is different from 𝑚2 in general.
owever, for a super-catastrophic collision (defined as 𝑚̃ < 𝑀∕10),

̃ ≠ 𝑀 − 𝑚̌ and we use instead (Leinhardt and Stewart, 2012, Eq. (44))

̃ = 𝑀
10

( 10
9

𝑚̌
𝑀

)−3∕2
, (48)

here 𝑚̌ is given by Eq. (46) and we redefine 𝑚̌ as 𝑚̌ = 𝑀 − 𝑚̃. When
super-catastrophic collision occurs, NcorpiN discards the ejected
ass from the simulation (assumed vaporized), and uses Eq. (48) to
etermine the mass of the remaining moonlet.

.3.3. Mass of successive fragments
Eq. (46) gives the mass of the largest fragment, and in this section,

e give an estimate of the mass of the remaining fragments. Hereafter,
he tail designates the set of all the fragments, largest excluded. Lein-
ardt and Stewart (2012) fit the size distribution of the remaining
ragments with

(𝑟) = 𝐾𝑟−(𝛽+1), (49)

here 𝑛(𝑟)𝑑𝑟 is the total number of fragments with radii between 𝑟 and
+ 𝑑𝑟, and 𝐾 and 𝛽 are constant. Let 𝑚̃𝑛 and 𝑟𝑛 be the mass and radius
f the 𝑛th largest fragment. We assume that all fragments are spherical
ith density 𝜌 and we write 𝑚̃1 ∶= 𝑚̃. The total number of fragments

arger than the 𝑛th largest fragment is

= ∫

+∞

𝑟𝑛
𝑛(𝑟)𝑑𝑟 = 𝐾

𝛽
𝑟−𝛽𝑛 , (50)

hich yields 𝑟𝑛 = (𝑛𝛽∕𝐾)−1∕𝛽 . The total mass of fragments smaller than
he 𝑛th largest fragment is given by

−
𝑛−1
∑

𝑘=1
𝑚̃𝑘 = ∫

𝑟𝑛

0

4
3
𝜋𝜌𝑟3𝑛(𝑟)𝑑𝑟 =

4𝜋𝜌𝐾𝑟3−𝛽𝑛
3 (3 − 𝛽)

. (51)

Eqs. (50) and (51) show that a realistic description verifies 0 < 𝛽 < 3.
Combining them, we obtain, for 𝑛 ≥ 2, the mass of the 𝑛th largest
ragment from the recursive expression

̃ 𝑛 =
3 − 𝛽
𝑛𝛽

(

𝑀 −
𝑛−1
∑

𝑘=1
𝑚̃𝑘

)

. (52)

his approach predicts an infinite number of fragments, and the partial

ass 𝑚̃1+⋯+𝑚̃𝑛 slowly converges towards 𝑀 as 𝑛 goes to infinity. Some b

12 
runcation rule on the fragment sizes has to be defined to prevent a too
arge number of fragments. Eq. (52) gives for the mass of the second
argest fragment

̃ 2 =
3 − 𝛽
2𝛽

𝑚̌ ∶= 𝑚̌
𝑁̃

. (53)

Assuming that the tail is made up only of fragments of mass 𝑚̃2, 𝑁̃ is
defined as the number of fragments in the tail. From SPH simulations
in the gravity regime, Leinhardt and Stewart (2012) fit 𝛽 = 2.85, which
yields 𝑁̃ = 38. In order not to overcomplicate, we assume for NcorpiN
that all the fragments of the tail have a mass 𝑚̃2. The user chooses 𝑁̃
and Eq. (53) is used to determine 𝑚̃2 and the exponent 𝛽 of the power
law. The fragmenting collision can be synthetized with the following
schema:

𝚫𝐫

𝚫𝐯
𝑚2

𝑚1

ϙ

𝑅2

𝑅1

𝑅̃2 𝑚̃2

𝑅̃2

𝑚̃2

𝑚̌
=
𝑁̃
𝑚̃
2

𝑚̃2
𝑚̃2

𝑚̃2
𝑅̃2

𝑅̃2

𝑅̃2

𝑚̃

Before impact After impact

𝑚1 + 𝑚2 = 𝑚̃ + 𝑚̌ = 𝑀

𝑅̃

ta
il

.3.4. The fragmentation model of NcorpiN

The built-in fragmentation model of NcorpiN proceeds as follow.
n the parameter file, the user defines two thresholds 𝑚(0) ≪ 1 and 𝑚(1),
uch that:

• If 𝑚̌ < 𝑚(0)𝑀 , then the collision results in a merger.
• Else if 𝑚̃ < 𝑀∕10, then the impact is super-catastrophic. Eq. (48)

is used and the tail is discarded.
• Else if 𝑚̃2 < 𝑚(1) and 𝑚̌ ≤ 𝑚̃, then the tail is made up of one unique

fragment of mass 𝑁̃𝑚̃2 = 𝑚̌.
• Else, the two moonlets are broken into 𝑁̃ + 1 pieces, where the

largest fragment has a mass 𝑚̃ = 𝑀− 𝑚̌ given by Eq. (46), and the
𝑁̃ other fragments have a mass 𝑚̃2 given by Eq. (53).

• The largest fragment is given velocity 𝒗̃ and position 𝒓̃ determined
in Section 5.3.6, whereas the 𝑁̃ (resp. one) other fragments have
velocities 𝒗̃1, 𝒗̃2, ⋯ , 𝒗̃𝑁̃ (resp. 𝒗̌) determined in Section 5.3.5.

.3.5. Position and speed of the tail’s fragments

We now estimate the velocities of the fragments after the impact,
sing Eq. (45) for 𝑀⋆(𝑣). We define

⋆(𝑣) ∶= −𝑑𝑀⋆

𝑑𝑣
= 3𝜇 (𝑚̌ + 𝜅) 1

𝑣

(𝑣esc
𝑣

)3𝜇
, (54)

here 𝜅 = −𝑀⋆(+∞) = 3𝑘𝑚1𝜌2 (cos ϙ)3𝜇 ∕
(

4𝜋𝜌1
)

and 𝑚⋆(𝑣)𝑑𝑣 is the
ass of fragments with speeds relative to the largest fragment in the

ange [𝑣, 𝑣 + 𝑑𝑣]. Since all 𝑁̃ fragments of the tail are unbounded to the
argest fragment, the slowest of these is made up of particles having
een ejected with velocities between 𝑣 and some velocity 𝑢 . More
esc 1
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generally, the 𝑘th fastest fragment of the tail has a velocity 𝑣̃′𝑘 with
espect to the largest fragment given by

̃ 2𝑣̃
′
𝑘 = ∫

𝑢𝑘

𝑢𝑘−1
𝑚⋆(𝑣)𝑣𝑑𝑣, (55)

here 𝑢0 = 𝑣esc, 𝑢𝑁̃ = 𝑣max, and for all 𝑘 ≤ 𝑁̃ , 𝑢𝑘−1 < 𝑣̃′𝑘 < 𝑢𝑘. The
peeds 𝑢𝑘 are found by writing

̃ 2 = ∫

𝑢𝑘

𝑢𝑘−1
𝑚⋆(𝑣)𝑑𝑣 = (𝑚̌ + 𝜅)

(

𝑧𝑘−1 − 𝑧𝑘
)

, (56)

here we defined 𝑧𝑘 =
(

𝑣esc∕𝑢𝑘
)3𝜇 . This yields 𝑧𝑘−1 − 𝑧𝑘 = 𝑚̃2∕ (𝑚̌ + 𝜅),

r

𝑘 = 1 −
𝑘𝑚̃2
𝑚̌ + 𝜅

, for 0 ≤ 𝑘 ≤ 𝑁̃. (57)

From Eq. (55), we now obtain the scalar velocity of the 𝑘th fastest
fragment of the tail as

𝑣̃′𝑘 =
𝑣esc
ϛ

𝑚̌ + 𝜅
𝑚̃2

(

𝑧ϛ𝑘−1 − 𝑧ϛ𝑘
)

, for 1 ≤ 𝑘 ≤ 𝑁̃, (58)

where22
ϛ = (3𝜇 − 1) ∕3𝜇. Surprisingly enough, these speeds are in-

dependent of 𝛥𝑣, suggesting that a high impact velocity means more
fragmentation but does not translate into a faster ejecta. When the tail
is made up of one unique fragment, its scalar velocity is given by

𝑣̌′ = 1
𝑚̌ ∫

𝑣max

𝑣esc

𝑚⋆(𝑣)𝑣𝑑𝑣 =
𝑣esc
ϛ

𝑚̌ + 𝜅
𝑚̌

(

1 −
(

𝑣esc
𝑣max

)3𝜇−1
)

. (59)

The existing literature gives little insight on the directions of fragments
following an impact (Suo et al., 2024 give some constraints but their
work is limited to impacts on granular media in an intermediate regime
between gravity and strength), and our model here is arbitrary. The
speeds of the tail’s fragments are given a direction with respect to the
largest fragment in the following way. We first give to the 𝑘th fragment
of the tail the position

𝒓̃′𝑘 =
𝑅̃ + 𝑅̃2

𝛥𝑟
𝛥𝒓 + 2𝑝𝑘𝑅̃2𝒖 + 2𝑞𝑘𝑅̃2𝒗, (60)

here 𝑅̃ is the radius of the largest fragment and 𝑅̃2 is the radius of
he tail’s fragments. We then give it the speed

̃ ′𝑘 =
𝑣̃′𝑘

√

1 + 𝑝2𝑘 + 𝑞2𝑘

(𝛥𝒓
𝛥𝑟

+ 𝑝𝑘𝒖 + 𝑞𝑘𝒗
)

, (61)

here
(

𝑝𝑘, 𝑞𝑘
)

∈ Z2, 𝑣̃𝑘 is given by Eq. (58) and the unit vectors 𝒖 and
are defined by

= 𝜟𝒓 × 𝜟𝒗
𝛥𝑟𝛥𝑣 sin ϙ

and 𝒖 = 𝒗 × 𝜟𝒓
𝑅1 + 𝑅2

. (62)

f the collision is nearly frontal, then the vector 𝒗 is ill-defined. In that
ase we take for 𝒗 any unit vector orthogonal to 𝛥𝒓. With 𝑁̃ = 15 (or
= 45∕17), −1 ≤ 𝑝𝑘 ≤ 3 and23 −1 ≤ 𝑞𝑘 ≤ 1, the fragmented moonlets
ould look like the following schema

22
ϛ is an archaic Greek letter called stigma.

23 This choice ensures that more fragments are ejected forward than
ackward, which sounds intuitive.
13 
𝛥𝒓

𝒗̃𝑘
𝒗̃𝑘

𝒗̃𝑘

𝒗̃𝑘

𝒗̃𝑘

𝑚̃

While all fragments of the tail are unbounded to the largest frag-
ment, there is no reason why the fragments of the tail should be
unbounded to one another. In practice however, with our choice for
Eq. (61), all the fragments are unbounded, which prevents a chain
reaction of successive fragmentations, and ensures than no fragment
of the tail ends up being larger than the second largest fragment (as
would happen if fragments were bounded to one another).

5.3.6. Position and speed of the largest remnant
Choosing the position 𝒓̃ and velocity 𝒗̃ of the largest remnant

completes the definition of NcorpiN’s fragmentation model. Indeed,
the positions and speeds of the tail’s fragments are then given in the
inertial reference frame (, 𝒊, 𝒋,𝒌) by

𝒓̃𝑘 = 𝒓̃′𝑘 + 𝒓̃, 𝒗̃𝑘 = 𝒗̃′𝑘 + 𝒗̃. (63)

When the tail is reunited into a single moonlet, its position and speed
are 𝒓̌ = 𝒓̌′ + 𝒓̃ and 𝒗̌ = 𝒗̌′ + 𝒗̃, where 𝒓̌′ and 𝒗̌′ are defined by Eqs. (60)
and (61) with 𝑝1 = 𝑞1 = 0. Let

𝒗cm =
𝑚1
𝑀

𝒗𝟏 +
𝑚2
𝑀

𝒗𝟐 and 𝒓cm =
𝑚1
𝑀

𝒓𝟏 +
𝑚2
𝑀

𝒓𝟐 (64)

be the velocity and position of the center of mass of the colliding pair.
We define

𝑮 = 𝑚1𝒓1 × 𝒗1 + 𝑚2𝒓2 × 𝒗2 (65)

the angular momentum of the pair at the collision. For a merger, the
conservation of the angular momentum (resp. the momentum) reads
𝑀 𝒓̃×𝒗̃ = 𝑮 (resp. 𝒗̃ = 𝒗cm). It is interesting to notice that it is impossible
to preserve both the momentum and the angular momentum at the
collision without considering the spin. Indeed, the conservation of the
angular momentum implies that 𝒗̃ is orthogonal to 𝑮. However, from

𝑀 𝒗̃ ⋅𝑮 = 𝑀𝒗cm ⋅𝑮 = 𝑚1𝑚2𝒗2 ⋅ 𝛥𝒓 × 𝛥𝒗, (66)

we conclude that it is possible to conserve both the momentum and
the angular momentum only if 𝛥𝒓 × 𝛥𝒗 = 𝟎, or equivalently, only if
the collision is frontal (ϙ = 0). For oblique collisions, the only way
to conserve both is to take into account the spin of the moonlets.
However, taking into account the spin complexifies the treatment of
collisions as well as the numerical implementation and slows down
the code. Therefore, NcorpiON does not implement the spin and if
the user chooses to use the fragmentation model or to resolve all
collisions by merging, then it must be decided if the momentum or
the angular momentum should be preserved upon impact. If falcON is
used to treat mutual interactions, then it makes more sense to preserve
the momentum upon collision, since by construction, falcON preserves
the total momentum when computing mutual gravity, but does not
preserve the total angular momentum.

When the colliding moonlets merge, the momentum is conserved
simply by taking 𝒗̃ = 𝒗 and 𝒓̃ = 𝒓 , whereas we achieve the
cm cm
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conservation of the momentum with 𝒗̃ = 𝒗cm − 𝑚̌𝒗̌′∕𝑀 and 𝒓̃ =
𝒓cm − 𝑚̌𝒓̌′∕𝑀 when the tail is reunited into a unique fragment. Finally,
when a full fragmentation occurs, we conserve the total momentum
with

𝒗̃ = 𝒗cm −
𝑁̃
∑

𝑗=1

𝑚̃2
𝑀

𝒗̃′𝑘 and 𝒓̃ = 𝒓cm −
𝑁̃
∑

𝑗=1

𝑚̃2
𝑀

𝒓̃′𝑘 (67)

Conserving the angular momentum is not straightforward and we
present our model for doing so in Appendix F.

6. Conclusions

We have presented with this paper a novel 𝑁-body software, faster
than existing 𝑁-body integrators on a single core implementation.
Unlike other similar softwares, NcorpiN is able to treat a fragmen-
tation subsequent to a violent collision. Mutual interactions (collisions
and self-gravity) can be treated with four different modules, whose
time complexities range from (𝑁) to (𝑁2). Using falcON module
for mutual interactions, NcorpiN is found to be 25 times faster than
he software REBOUND when 𝑁 = 223, for the same precision in
utual gravity computation. Furthermore, with multipole expansions

mplemented up to order 𝑝 = 8, NcorpiN can compute gravity rapidly
nd precisely.

NcorpiN is very adapted to simulations of satellites or planet
ormation, and we are currently using it to better understand the for-
ation of the Moon from a protolunar disk around the Earth, following

he giant impact between the proto-Earth and Theia. We are also using
corpiN and its viscoelastic module to simulate the close approach
f asteroid 99942 Apophis in 2029. The results of these works will
onstitute two additional papers, that will be published afterwards.

NcorpiN has its own website and is distributed freely on the
ollowing github repository. Both these resources provide extensive
ocumentation and the website also provides with a detailed overview
f the structure of NcorpiN’s code.

This software was written with time efficiency in mind and aims
o be as CPU-efficient and cache-friendly as possible. As such, we
elieve it is among the fastest single-core 𝑁-body codes for large
, if not the fastest.24 However, unlike other softwares, NcorpiN

acks a parallelized version. Even though REBOUND is found to be
ignificantly slower than NcorpiN on a single-core run, it would
utperform NcorpiN if heavily parallelized. Therefore, we plan to
pgrade NcorpiN to a parallelized version in the future.

NcorpiN has its own fragmentation module that relies on crater
caling and ejecta models to come up with a realistic outcome for
iolent collisions between moonlets. However, this model makes as-
umptions (e.g. impactor much smaller than target) that can be hard
o reconcile with the reality of a simulation. Furthermore, the direc-
ion of the fragments is chosen arbitrarily after a fragmentation, and
hese issues could reduce the actual degree of realism of NcorpiN’s
ragmentation model.

Beyond planetary or satellite formation, disks of debris are also
bserved by stellar occultation around some trans-Neptunian object like
he dwarf planet Haumea (Ortiz et al., 2017), or a smaller-sized body
alled Quaoar (Morgado et al., 2023). Both these objects feature rings
ocated outside of their Roche radius, and NcorpiN could be a relevant
ool to understand what mechanisms prevent the rings’ material from
ccreting. Similarly, the viscoelastic tool of NcorpiN, based on the
ork of Frouard et al. (2016), could be useful to simulate non-rigid
odies subject to tides.

24 GyrfalcON on NEMO could be faster, since it also uses falcON. However,
t does not handle collisions or fragmentations.
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ppendix A. Notations

We gather for convenience all the notations used throughout this
ork in Table A.2.

ppendix B. General orbital dynamics

This appendix focuses on aspects of orbital dynamics that are not
oonlet−moonlet interactions (treated in Section 3).

.1. Interactions with the center of mass of the Earth

We consider here the gravitational interactions between the moon-
ets and the center of mass of the Earth. Let 𝒓 be the position of a
oonlet in the geocentric reference frame. Its gravitational potential
er unit mass reads

= −
𝑀⊕

𝑟
, (B.1)

where  is the gravitational constant. The moonlet’s acceleration is
given by

𝒓̈ = −∇𝒓𝑉 , (B.2)

that is,

𝒓̈ = −
𝑀⊕

𝑟3
𝒓. (B.3)

NcorpiN uses dimensionless units such that 𝑅⊕ = 𝑀⊕ = 1 and
 = 4𝜋2. The choice  = 4𝜋2, instead of the more common  = 1,
ensures that the unit of time is the orbital period at Earth surface. The

user can change this in the parameter file.
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Table A.2
Notations used in this paper, ordered roughly by first appearance (top to bottom). Notations used right after their definition only are not
included here. ϛ (stigma) and ϙ (qoppa) are archaic Greek letters.
Notation Definition Notation Definition Notation Definition Notation Definition

bold vector or tensor ̇ 𝑑∕𝑑𝑡 𝑁 number of moonlets 𝑅⊕ Earth radius
𝑀⊕ Earth mass 𝑀⊙ Sun mass 𝑅$ Moon radius 𝑚𝑗 moonlet mass
𝒓 moonlet position 𝒗 moonlet speed  gravitational constant 𝜁 geoid altitude
𝑌𝑙𝑚 spherical harmonic 𝜴 Earth rotation 𝛺c

(

𝑀⊕∕𝑅3
⊕
)1∕2 𝐽2 2nd zonal harmonic

𝑃2(𝑧)
1
2

(

3𝑧2 − 1
)

𝛾 mesh-size 𝑥 number of neighbors 𝑠 subdivision threshold
𝒔̄𝐴 Eq. (7) 𝑟max Eqs. (8) & (11) 𝑟crit Eqs. (9) & (12) 𝒔𝐴 Eq. (10)
𝜃 opening angle 𝑴 (𝑛) Eq. (20) 𝜇𝑖 𝑚𝑖 𝜟,𝑹 Fig. 3
𝑔(𝒛) 1∕𝑧 𝛁(𝑛)𝑔(𝑹) Eq. (17) 𝑝 expansion order ⊙ Eq. (18)
⊗ Eq. (19) 𝑪 (𝑛) Eq. (25) 𝑻 (𝑛) arbitrary tensor 𝑁cc,cb,cs Sect. 3.4.4 & 3.4.5
𝛥𝒓, 𝛥𝒗 Eq. (29) ϙ Eq. (30) 𝑏 impact parameter 𝜌 moonlet density
𝛼 Eqs. (34) & (35) 𝑓 Eq. (35) 𝐶, 𝜇, 𝜈 Eq. (38) 𝑀⋆(𝑣) Eq. (45)
𝑘, 𝐶1 near Eq. (43) 𝑣esc Eq. (47) 𝑚̌ Eq. (46) 𝑚̃ below Eq. (46)
𝛽 Eq. (49) 𝑚̃𝑗 Eq. (52) 𝑁̃ Eq. (53) 𝑚(0) Section 5.3.4
𝒓̃, 𝒗̃ F 𝑚⋆(𝑣) Eq. (54) ϛ (3𝜇 − 1) ∕3𝜇 𝒓̃′𝑘 , 𝒗̃

′
𝑘 Eqs (60) & (61)

𝒓̃𝑘 , 𝒗̃𝑘 Eq. (63) 𝒓cm , 𝒗cm Eq. (64) 𝑮 Eq. (65) 𝜦 𝒔𝐵 − 𝒔𝑏
𝑀 𝑚1 + 𝑚2 𝒈̃, 𝒔̃, 𝒖̃ Eq. (F.12) 𝜅 below Eq. (54) 𝑅̃, 𝑅̃2 below Eq. (60)
B.2. Earth flattening and interactions with the equatorial bulge

The Earth is not exactly a sphere, and under its own rotation, it
tends to take an ellipsoidal shape. The subsequent redistribution of
mass modifies its gravitational field, affecting the moonlets. Let 𝜁 (𝜃, 𝜑)
be the altitude of the geoid of the Earth, where

𝑋 = 𝑟 sin 𝜃 cos𝜑,

𝑌 = 𝑟 sin 𝜃 sin𝜑,

= 𝑟 cos 𝜃,

(B.4)

is the relation between the cartesian and spherical coordinates of
(, 𝑰 ,𝑱 ,𝑲). If 𝑅⊕ denotes the mean radius of the Earth, then the geoid
s generally defined as the only equipotential surface such that

∫

2𝜋

0 ∫

𝜋

0
𝜁 (𝜃, 𝜑) sin 𝜃𝑑𝜃𝑑𝜑 = 𝑅⊕, (B.5)

hat is, as the only equipotential surface whose average height is the
ean radius. Expanding the geoid over the spherical harmonics as

(𝜃, 𝜑) = 𝑅⊕ [1 + ℎ(𝜃, 𝜑)] , and

(𝜃, 𝜑) =
+∞
∑

𝑙=2

𝑙
∑

𝑚=−𝑙
𝜖𝑙𝑚𝑌𝑙𝑚(𝜃, 𝜑)

(B.6)

atisfies Eq. (B.5). For reference, the definition of the spherical harmon-
cs used here is given in Appendix A of Couturier (2022). If the Earth
s spherical, then its potential is radial and we take 𝜁 (𝜃, 𝜑) = 𝑅⊕, that

is, 𝜖𝑙𝑚 = 0 for all 𝑙 and 𝑚.
Similarly as for the geoid, we write the potential raised by the

edistribution of mass within the Earth as (e.g. Boué et al., 2019)

𝑉 (𝑟, 𝜃, 𝜑) = −
𝑀⊕

𝑟
[1 + 𝑣̂(𝑟, 𝜃, 𝜑)] + 𝑉𝛺(𝑟, 𝜃),

̂(𝑟, 𝜃, 𝜑) =
+∞
∑

𝑙=2

𝑙
∑

𝑚=−𝑙

(𝑅⊕

𝑟

)𝑙
𝑉𝑙𝑚𝑌𝑙𝑚(𝜃, 𝜑),

(B.7)

where 𝑉𝛺(𝑟, 𝜃) = 𝛺2𝑟2
(

𝑃2(cos 𝜃) − 1
)

∕3 is the potential raised by the
rotation itself. We denote 𝛺c =

(

𝑀⊕∕𝑅3
⊕

)1∕2
the Keplerian frequency

at Earth’s surface. With this notation, the potential raised by the Earth
deformed under its own rotation can be rewritten

𝑉 (𝑟, 𝜃, 𝜑) = −
𝑀⊕

𝑟
[1 + 𝑣(𝑟, 𝜃, 𝜑)] − 1

3
𝛺2𝑟2,

(𝑟, 𝜃, 𝜑) =
+∞
∑

𝑙=2

𝑙
∑

𝑚=−𝑙

(𝑅⊕

𝑟

)𝑙
𝑉𝑙𝑚𝑌𝑙𝑚(𝜃, 𝜑),

(B.8)

where 𝑉𝑙𝑚 = 𝑉𝑙𝑚 if (𝑙, 𝑚) ≠ (2, 0) and

𝑉20 = 𝑉20 −
1 𝛺2

2
𝑟5
5
. (B.9)
3 𝛺c 𝑅⊕
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If we assume ℎ ≪ 1 and 𝑣 ≪ 1 (this is equivalent to 𝛺2 ≪ 𝛺2
c), then

it is easy to verify from the definition of the geoid that (Wahr, 1996,
Sect. 4.3.1)

𝜖𝑙𝑚 = 𝑉𝑙𝑚
|

|

|𝑟=𝑅⊕
. (B.10)

This gives a relation between the figure of the Earth (the geoid) and
the potential raised by the redistribution of mass. If we limit ourselves
to the quadrupolar order and if we assume that the problem does not
to depend on 𝜑 (axisymmetry), then all the 𝑉𝑙𝑚 and 𝜖𝑙𝑚 vanish for
(𝑙, 𝑚) ≠ (2, 0). For the fluid Earth, it can be shown that (Couturier, 2022,
Sect. 5.2.1; Wahr, 1996, Eq. (4.24))

𝜖20 = −5
6
𝛺2

𝛺2
c
. (B.11)

The 𝐽2 coefficient is defined as 𝐽2 = −𝑉20 (with the convention of
Appendix A of Couturier, 2022 for the spherical harmonics). For the
fluid Earth, Eqs. (B.9), (B.10) and (B.11) yield

𝐽2 =
1
2
𝛺2

𝛺2
c
. (B.12)

According to Eq. (B.7), a moonlet orbiting the Earth at position 𝒓 in
the geocentric reference frame, feels, from the equatorial bulge, the
potential per unit mass25

𝑉𝐽2 =
𝑀⊕𝑅2

⊕

𝑟3
𝐽2𝑃2(cos 𝜃) = −

𝑀⊕𝑅2
⊕

2𝑟5
𝐽2

(

𝑟2 − 3 (𝒌 ⋅ 𝒓)2
)

. (B.13)

Writing 𝒓 = 𝑥𝒊+𝑦𝒋+𝑧𝒌, we have 𝒌 ⋅ 𝒓 = 𝑧, and then using Eq. (B.2), the
contribution of Earth’s equatorial bulge to the acceleration of a moonlet
takes the form

𝒓̈ =
𝑀⊕𝑅2

⊕𝐽2
𝑟5

[

15𝑧2 − 3𝑟2

2𝑟2
𝒓 − 3𝑧𝒌

]

. (B.14)

The user chooses the sideral rotation period of the Earth (or central
body) in the parameter file of NcorpiN. Then, Eq. (B.12) and the
fluid approximation are used to determine the 𝐽2 of the central body.
Alternatively, the user can also force a particular value for 𝐽2.

B.3. Interaction with a perturbator

The interaction between a moonlet, located at 𝒓, and a perturbator,
located at 𝒓⊙ in the geocentrical reference frame can be taken into
account in the model by adding to the moonlet the potential per unit
mass

𝑉⊙ = −𝑀⊙

(

1
|

|

𝒓 − 𝒓⊙||
−

𝒓 ⋅ 𝒓⊙
𝑟3⊙

)

. (B.15)

25 Due to the axisymmetry, we can go to the geocentric reference frame by
simply removing 𝑉 in Eq. (B.7).
𝛺



J. Couturier et al.

T
t
c

p
a
t
f

𝑴

New Astronomy 114 (2025) 102313 
To the quadrupolar order, this gives

𝑉⊙ = −
𝑀⊙

2𝑟3⊙

(

3

(

𝒓 ⋅ 𝒓⊙
)2

𝑟2⊙
− 𝑟2

)

. (B.16)

Eq. (B.2) yields, for the acceleration of the moonlet

𝒓̈ = −
𝑀⊙

𝑟3⊙

(

𝒓 − 3
𝒓 ⋅ 𝒓⊙
𝑟2⊙

𝒓⊙

)

. (B.17)

In order to allow for a large variety of orbits for the perturbator,
the position vector 𝒓⊙ is set on a Keplerian orbit around the Earth.

he elliptic elements of this Keplerian orbit are chosen by the user in
he parameter file. Then, NcorpiN converts the elliptic elements into
artesian coordinates in order to obtain the value of the vector 𝒓⊙ in

Eq. (B.17).

Appendix C. Multipole moment 𝑴 (𝒏)(𝒔𝑩) of a cell from those of its
children

We give here for 𝑛 ≤ 5 the expression of the multipole moment
𝑴 (𝑛)(𝒔𝐵) of a parent cell (Eq. (20)) from the multipole moments 𝒎(𝑛)(𝒔𝑏)
of its children cells. NcorpiN implements expansion orders up to 𝑝 = 8
which requires computation of the multipole moments up to 𝑛 = 7,
but we refrain from providing 𝑴 (6) and 𝑴 (7) here as to not overload
this appendix. We believe that similar expressions for 𝑛 > 5 can be
easily deduced. The notations 𝒔𝐵 and 𝒔𝑏 are the expansion centers of the
arent and of one of its children. We denote 𝜦 = 𝒔𝐵 − 𝒔𝑏 =

(

𝛬1, 𝛬2, 𝛬3
)

nd we assume that the expansion centers are the barycentres, leading
o the simplification 𝑴 (1)(𝒔𝐵) = 𝒎(1)(𝒔𝑏) = 𝟎. The contribution 𝑴 (𝑛)

𝑏→𝐵
rom child 𝑏 to the multipole moment of its parent 𝐵 is given by

𝑀 (0)
𝑏→𝐵 = 𝑚(0), (C.1)

(2)
𝑏→𝐵 = 𝒎(2) + 𝑚(0)𝜦⊗𝜦, (C.2)

[

𝑴 (3)
𝑏→𝐵

]

𝑖𝑗𝑘
= 𝑚(3)

𝑖𝑗𝑘

−
(

𝑚(2)
𝑖𝑗 𝛬𝑘 + 𝑚(2)

𝑖𝑘 𝛬𝑗 + 𝑚(2)
𝑗𝑘𝛬𝑖

)

− 𝑚(0)𝛬𝑖𝛬𝑗𝛬𝑘,
(C.3)

[

𝑴 (4)
𝑏→𝐵

]

𝑖𝑗𝑘𝑙
= 𝑚(4)

𝑖𝑗𝑘𝑙 −
(

𝑚(3)
𝑖𝑗𝑘𝛬𝑙 + 𝑚(3)

𝑖𝑗𝑙𝛬𝑘 + 𝑚(3)
𝑖𝑘𝑙𝛬𝑗

+ 𝑚(3)
𝑗𝑘𝑙𝛬𝑖

)

+
(

𝑚(2)
𝑖𝑗 𝛬𝑘𝛬𝑙 + 𝑚(2)

𝑖𝑘 𝛬𝑗𝛬𝑙 + 𝑚(2)
𝑖𝑙 𝛬𝑗𝛬𝑘

+ 𝑚(2)
𝑗𝑘𝛬𝑖𝛬𝑙 + 𝑚(2)

𝑗𝑙 𝛬𝑖𝛬𝑘 + 𝑚(2)
𝑘𝑙 𝛬𝑖𝛬𝑗

)

+ 𝑚(0)𝛬𝑖𝛬𝑗𝛬𝑘𝛬𝑙 ,

(C.4)

[

𝑴 (5)
𝑏→𝐵

]

𝑖𝑗𝑘𝑙𝑚
= 𝑚(5)

𝑖𝑗𝑘𝑙𝑚 −
(

𝑚(4)
𝑖𝑗𝑘𝑙𝛬𝑚 + 𝑚(4)

𝑖𝑗𝑘𝑚𝛬𝑙

+ 𝑚(4)
𝑖𝑗𝑙𝑚𝛬𝑘 + 𝑚(4)

𝑖𝑘𝑙𝑚𝛬𝑗 + 𝑚(4)
𝑗𝑘𝑙𝑚𝛬𝑖

)

+
(

𝑚(3)
𝑖𝑗𝑘𝛬𝑙𝛬𝑚

+ 𝑚(3)
𝑖𝑗𝑙𝛬𝑘𝛬𝑚 + 𝑚(3)

𝑖𝑗𝑚𝛬𝑘𝛬𝑙 + 𝑚(3)
𝑖𝑘𝑙𝛬𝑗𝛬𝑚 + 𝑚(3)

𝑖𝑘𝑚𝛬𝑗𝛬𝑙

+ 𝑚(3)
𝑖𝑙𝑚𝛬𝑗𝛬𝑘 + 𝑚(3)

𝑗𝑘𝑙𝛬𝑖𝛬𝑚 + 𝑚(3)
𝑗𝑘𝑚𝛬𝑖𝛬𝑙 + 𝑚(3)

𝑗𝑙𝑚𝛬𝑖𝛬𝑘

+ 𝑚(3)
𝑘𝑙𝑚𝛬𝑖𝛬𝑗

)

−
(

𝑚(2)
𝑖𝑗 𝛬𝑘𝛬𝑙𝛬𝑚 + 𝑚(2)

𝑖𝑘 𝛬𝑗𝛬𝑙𝛬𝑚

+ 𝑚(2)
𝑖𝑙 𝛬𝑗𝛬𝑘𝛬𝑚 + 𝑚(2)

𝑖𝑚𝛬𝑗𝛬𝑘𝛬𝑙 + 𝑚(2)
𝑗𝑘𝛬𝑖𝛬𝑙𝛬𝑚

+ 𝑚(2)
𝑗𝑙 𝛬𝑖𝛬𝑘𝛬𝑚 + 𝑚(2)

𝑗𝑚𝛬𝑖𝛬𝑘𝛬𝑙 + 𝑚(2)
𝑘𝑙 𝛬𝑖𝛬𝑗𝛬𝑚

+ 𝑚(2)
𝑘𝑚𝛬𝑖𝛬𝑗𝛬𝑙 + 𝑚(2)

𝑙𝑚𝛬𝑖𝛬𝑗𝛬𝑘

)

− 𝑚(0)𝛬𝑖𝛬𝑗𝛬𝑘𝛬𝑙𝛬𝑚,

(C.5)

where (𝑖, 𝑗, 𝑘, 𝑙, 𝑚) ∈ {1, 2, 3}5. The multipole moment of the parent is
then obtained by summing over its children

𝑴 (𝑛)(𝒔𝐵) =
∑

children 𝑏
𝑴 (𝑛)

𝑏→𝐵 . (C.6)

Appendix D. Parameters of falcON algorithm

Unlike the brute-force method, which requires no parameter to be
specified, Dehnen’s algorithm falcON depends on various parameters,

that are
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• The order 𝑝 of the multipole expansions (Eq. (25)). This param-
eter influences both the speed and the precision of the gravity
computation.

• The subdivision threshold 𝑠 (Section 3.4.1). This parameter has a
clear influence on the speed but not on the precision of the gravity
computation.

• The opening angle 𝜃min of the root cell (Eq. (12)). Like 𝑝, this
parameter influences both the speed and the precision.

• The three thresholds 𝑁cs, 𝑁cc,pre and 𝑁cc,post defined in the
procedure TreeWalk (Section 3.4.5). They only slightly influence
the speed and do not influence the precision.

Choosing these parameters randomly before using NcorpiN is rather
arbitrary, and we provide with this appendix and Table D.3 a more
systematic approach. For expansion orders in the range 1 ≤ 𝑝 ≤ 8
and 𝜃min going from 0.25 to 0.75, we evaluated the performances of
our implementation of falcON (in terms of speed and precision) for a
disk of 𝑁 = 106 bodies. The characteristics of this disk are given below
Eq. (28). The parameters

(

𝑁cs, 𝑁cc,pre, 𝑁cc,post
)

turned out to have little
importance and we fixed them to (12, 0, 16) for collision search and
to (64, 8, 64) (resp. (128, 256, 1024)) for gravity computation with 𝑝 ≤ 4
(resp. 𝑝 > 4).

For a choice of the pair
(

𝑝, 𝜃min
)

, Table D.3 gives at the top of
the cell the median relative error (defined by Eq. (28)) and at the
bottom the corresponding running time (in seconds) for one force
calculation with our materialD.3. The small subscript can be added
to the power of 10 in order to obtain the relative error at the 99th
percentile instead of the median relative error. The first columns gives
the optimal choice for 𝑠 given 𝑝 that minimizes the total timestep
length (force calculation + collision search). The value in parenthesis
minimizes the gravity evaluation and should be chosen when collisions
are not searched. Finally, the last column gives the running time for
one collision search. It increases with 𝑝 because at large values of
𝑝, the subdivision threshold 𝑠 that is used (because it minimizes the
sum gravity calculation + collision search) is sub-optimal for collision
search (for which an optimal 𝑠 is less than 10). All running times were
estimated by averaging over eight timesteps (except for the brute-force,
for which only one timestep was executed).

Like for Fig. 4, the relative errors in Table D.3 are computed by only
considering the accelerations due to the self gravity of the disk itself in
Eq. (28). If the system features a central mass 10𝛼 times more massive
than the disk, and since the accelerations due to the central mass are
computed directly without error (the central mass is not in the octree),
then the powers of 10 in Table D.3 must be decreased by 𝛼 in order to
obtain the relative errors of the system.

In order to give an example on how to use this Table, suppose we
want to simulate a disk with a central mass 103 times more massive
than the disk (e.g. a protoplanetary disk). Furthermore, we require
that 99% of the bodies have their acceleration computed with five
significant digits (the relative error at the 99th percentile must be
≤ 10−5). According to Table D.3, the choice

(

𝑝, 𝜃min, 𝑠
)

= (4, 0.55, 30)
gives a relative error at the 99th percentile of 10−3.25+1.16−3 = 10−5.09.
Furthermore, with a timestep time of 3.31 s ×

(

𝑁∕106
)

, this is the
fastest cell of the Table to provide the required precision, hence our
final choice. If we now require the same precision when simulating
a viscoelastic body with the dedicated NcorpiN’s module,26 then we
choose

(

𝑝, 𝜃min, 𝑠
)

= (7, 0.3, 85) and obtain a relative error at the 99th
percentile of 10−6.46+1.32 = 10−5.14 for a timestep time less than 32.8 s
×
(

𝑁∕106
)

.

26 The viscoelastic body is made of massive nodes connecting by spring and
dampers in parallel. In that case, there is no central mass and no collisions.
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Table D.3
Performances of falcON as a function of 𝑝 and 𝜃min for 𝑁 = 106. In each cell we provide the median relative error (Eq. (28)) as a power of 10 (top)
and the time in seconds for one force calculation (bottom) with our material.a The last column gives the time in seconds for one collision search.
The first column specifies the subdivision threshold 𝑠 used, that minimizes the timestep length (force calculation + collision search). The value in
parenthesis minimizes the force calculation. The subscript of 10 needs to be added to the power to obtain the relative error at the 99th percentile.
For example, with

(

𝑝, 𝜃min , 𝑠
)

= (3, 0.4, 15), falcON took 2.80 s to complete one timestep for a median error 10−2.94 and an error at the 99th percentile
10−1.9. The brute force method took 6256 s (104 minutes) to complete one timestep.

𝑠 𝑝
𝜃min Collision

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 search

10(15) 1
10−1.21(+0.84) 10−1.17(+0.84) 10−1.13(+0.84) 10−1.10(+0.83) 10−1.07(+0.83) 10−1.05(+0.83) 10−1.03(+0.82) 10−1.01(+0.82) 10−1.00(+0.82) 10−0.99(+0.82) 10−0.97(+0.82)

1.74 1.42 1.20 1.08 1.01 0.96 0.92 0.90 0.86 0.84 0.83 0.43

10(15) 2
10−2.39(+0.87) 10−2.28(+0.86) 10−2.19(+0.85) 10−2.11(+0.84) 10−2.05(+0.84) 10−1.99(+0.84) 10−1.93(+0.83) 10−1.88(+0.82) 10−1.85(+0.82) 10−1.82(+0.82) 10−1.78(+0.82)

2.81 2.09 1.69 1.44 1.27 1.17 1.10 1.05 1.00 0.97 0.94 0.44

15(20) 3
10−3.44(+1.05) 10−3.24(+1.05) 10−3.08(+1.04) 10−2.94(+1.04) 10−2.83(+1.05) 10−2.73(+1.04) 10−2.63(+1.04) 10−2.54(+1.03) 10−2.48(+1.03) 10−2.43(+1.04) 10−2.38(+1.04)

5.31 3.70 2.87 2.24 1.89 1.65 1.49 1.39 1.30 1.23 1.20 0.56

30(35) 4
10−4.38(+1.13) 10−4.11(+1.13) 10−3.88(+1.14) 10−3.69(+1.15) 10−3.52(+1.16) 10−3.38(+1.16) 10−3.25(+1.16) 10−3.14(+1.17) 10−3.04(+1.17) 10−2.97(+1.19) 10−2.89(+1.19)

10.9 7.24 5.46 4.06 3.24 2.72 2.38 2.13 1.96 1.87 1.71 0.93

50(55) 5
10−5.37(+1.15) 10−5.01(+1.14) 10−4.71(+1.15) 10−4.45(+1.17) 10−4.22(+1.20) 10−4.02(+1.19) 10−3.86(+1.18) 10−3.71(+1.18) 10−3.58(+1.20) 10−3.47(+1.22) 10−3.35(+1.24)

23.5 15.4 10.8 8.09 6.37 5.18 4.30 3.76 3.35 3.05 2.87 1.46

50(55) 6
10−6.22(+1.22) 10−5.76(+1.24) 10−5.38(+1.26) 10−5.06(+1.27) 10−4.75(+1.31) 10−4.49(+1.31) 10−4.29(+1.29) 10−4.12(+1.29) 10−3.95(+1.30) 10−3.81(+1.33) 10−3.68(+1.35)

33.6 22.2 15.5 11.6 9.01 7.24 6.12 5.27 4.55 4.10 3.75 1.46

75(85) 7
10−7.01(+1.31) 10−6.46(+1.32) 10−5.99(+1.35) 10−5.61(+1.36) 10−5.26(+1.40) 10−4.93(+1.40) 10−4.67(+1.38) 10−4.48(+1.38) 10−4.28(+1.39) 10−4.11(+1.44) 10−3.95(+1.46)

49.0 32.8 22.6 16.7 13.1 10.6 8.45 7.17 6.25 5.55 5.02 2.05

110(115) 8
10−7.83(+1.41) 10−7.19(+1.42) 10−6.64(+1.45) 10−6.18(+1.45) 10−5.80(+1.50) 10−5.40(+1.50) 10−5.09(+1.46) 10−4.85(+1.46) 10−4.64(+1.48) 10−4.44(+1.53) 10−4.24(+1.57)

72.2 48.0 33.9 24.8 19.0 15.3 12.4 10.3 8.89 7.86 7.04 2.93

brute-force 2134 4122

a Clock : ∼ 4.5 GHz. Cache L1, L2, L3 : 80 KB, 1.25 MB, 24 MB. RAM : 32 GB DDR5 4800 MT/s.
ppendix E. Precession of the periapsis in the Leapfrog integrator

The Leapfrog integrator is a second-order symplectic integrator
asy to implement in practice. It is the integrator currently used by
corpiN. The main flaw of this integrator, besides its low order, is the
otentially large precession of the periapsis that it induces on the orbits.
ere, we use a Hamiltonian formalism to give an analytical expression
f the periapsis precession.

.1. Hamiltonian of the Leapfrog integrator

We consider a Hamiltonian  =  +  where  and  are
oth integrable. We assume that the generalized coordinates of  are
enoted by the vector 𝒒 and that their associated momenta are denoted
y 𝒑. We denote 𝐿𝜒 = {𝜒, ⋅} the Lie derivative along the flow of 𝜒 and
e use for the Poisson bracket the convention

𝜒, ⋅} =
𝜕𝜒
𝜕𝒑

𝜕
𝜕𝒒

−
𝜕𝜒
𝜕𝒒

𝜕
𝜕𝒑

.

For a timestep 𝜏, the Leapfrog integrator is defined by the operators
(Laskar and Robutel, 2001)

1 = 𝑒
𝜏
2𝐿𝑒𝜏𝐿𝑒

𝜏
2𝐿 and

1 = 𝑒
𝜏
2𝐿𝑒𝜏𝐿𝑒

𝜏
2𝐿 .

(E.1)

When  and  are respectively the kinetic and potential part of the
Hamiltonian, we recover the traditional sequence of steps where speeds
and positions are determined independently and at interleaved times.
A better approach in 𝑁-body problems is to consider that  is the Kep-
lerian part and  is the perturbative part. However in NcorpiN, close
approaches between the particles are frequent (several per timestep)
and we stick to the traditional definition where

𝑒𝜏𝐿 (𝒑, 𝒒) = (𝒑, 𝒒 + 𝜏𝒑) , (E.2)

is the drift operator and

𝑒𝜏𝐿 (𝒑, 𝒒) = 𝒑 + 𝜏𝒂, 𝒒 , (E.3)
( )

17 
is the kick operator, with 𝒂 = −𝜕∕𝜕𝒒 the acceleration. The Leapfrog
only approximately integrates the Hamiltonian . There exists how-
ever a Hamiltonian  that is exactly integrated by the Leapfrog. By
construction, we have, for 1

𝑒
𝜏
2𝐿𝑒𝜏𝐿𝑒

𝜏
2𝐿 = 𝑒𝜏𝐿 . (E.4)

An expansion to third order in 𝜏 gives

𝑒𝜏𝐿 = I + 𝜏𝑀, (E.5)

where

𝑀 = 𝐿 + 𝐿 + 𝜏
2
(

𝐿2
 + 𝐿2

 + 𝐿𝐿 + 𝐿𝐿
)

+ 𝜏2

24
(

4𝐿3
 + 4𝐿3

 + 3𝐿2
𝐿 + 3𝐿𝐿

2


+6𝐿2
𝐿 + 6𝐿𝐿

2
 + 6𝐿𝐿𝐿

)

,

(E.6)

and I is the identity operator. Writing 𝐿 = ln(I+𝜏𝑀)∕𝜏 = 𝑀−𝜏𝑀2∕2+
𝜏2𝑀3∕3, we end up with

𝐿 = 𝐿 + 𝐿 + 𝜏2

24
(

2𝐿2
𝐿 + 2𝐿𝐿

2


−𝐿𝐿
2
 − 𝐿2

𝐿 + 2𝐿𝐿𝐿 − 4𝐿𝐿𝐿
)

.
(E.7)

Using the identity

𝐿{,} = 𝐿𝐿 − 𝐿𝐿, (E.8)

this can be rewritten

1
=  − 𝜏2

24
{, {,}} + 𝜏2

12
{{,} ,} , (E.9)

and, by swapping  and 

1
=  − 𝜏2

24
{{,} ,} + 𝜏2

12
{, {,}} . (E.10)

We now consider the case where the system being integrated is a
perturbed Keplerian motion (e.g. a planetary system or a protoplanetary
disk). The perturbation is irrelevant in estimating the effect of the
Leapfrog integrator and we take for  the Kepler Hamiltonian

 =  +  = 1 𝑝2 −
𝜇
, (E.11)
2 𝑞
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with 𝒒 = 𝒓 the position, 𝒑 = 𝒗 the speed and 𝜇 the gravitational
parameter. This yields

{, {,}} = −
3𝜇
𝑟5

(𝒓 ⋅ 𝒗)2 + 𝜇𝑣2

𝑟3
,

{{,} ,} =
𝜇2

𝑟4
.

(E.12)

The Hamiltonian  exactly integrated by the Leapfrog method then
takes the form

1
=  − 𝜏2

24

(

𝜇𝑣2

𝑟3
−

3𝜇
𝑟5

(𝒓 ⋅ 𝒗)2 − 2𝜇2

𝑟4

)

,

1
=  − 𝜏2

24

(

𝜇2

𝑟4
−

2𝜇𝑣2

𝑟3
+

6𝜇
𝑟5

(𝒓 ⋅ 𝒗)2
)

.
(E.13)

E.2. Dynamics of the Leapfrog integrator

An efficient way of computing the precession of the periapsis is
to average the Hamiltonian  over the orbital period. We use the

elaunay canonical coordinates (𝛬,𝐺,𝐻 ;𝑀,𝜔,𝛺) (e.g. Laskar, 2017)
where the momenta are 𝛬 =

√

𝜇𝑎 with 𝑎 the semi-major axis, the
angular momentum per unit mass 𝐺 = 𝛬

√

1 − 𝑒2 with 𝑒 the eccentricity
and 𝐻 = 𝐺 cos 𝑖 with 𝑖 the inclination. The generalized coordinates are
the mean motion 𝑀 , the argument of the periapsis 𝜔 and the longitude
of the ascending node 𝛺. Using the averaged quantities (e.g. Boué and
Laskar, 2006, Appendix A)

1
2𝜋 ∫

2𝜋

0

𝜇 (𝒓 ⋅ 𝒗)2

𝑟5
𝑑𝑀 =

𝜇2𝑒2

2𝑎4
(

1 − 𝑒2
)5∕2

,

1
2𝜋 ∫

2𝜋

0

𝜇𝑣2

𝑟3
𝑑𝑀 =

𝜇2 (1 + 2𝑒2
)

𝑎4
(

1 − 𝑒2
)5∕2

,

1
2𝜋 ∫

2𝜋

0

𝜇2

𝑟4
𝑑𝑀 =

𝜇2 (1 + 𝑒2∕2
)

𝑎4
(

1 − 𝑒2
)5∕2

,

(E.14)

the averaged Hamiltonian integrated by the Leapfrog integrator reads

̄ = 1
2𝜋 ∫

2𝜋

0
1

𝑑𝑀 = 1
2𝜋 ∫

2𝜋

0
1

𝑑𝑀

=  +
𝜏2𝜇2 (1 + 𝑒2∕2

)

24𝑎4
(

1 − 𝑒2
)5∕2

,
(E.15)

or, in Delaunay coordinates

̄ =  +
𝜏2𝜇6 (3𝛬2 − 𝐺2)

48𝛬5𝐺5
. (E.16)

The precession of the periapsis is given by the Hamilton equation

𝜔̇ = 𝜕̄
𝜕𝐺

=
𝜏2𝜇6

16
𝐺2 − 5𝛬2

𝛬5𝐺6
. (E.17)

Converting back to the elliptic elements and denoting 𝑛 the mean
motion, the precession of the periapsis due to the Leapfrog reads

𝜔̇LF = −
𝜏2𝑛3

(

1 + 𝑒2∕4
)

4
(

1 − 𝑒2
)3

. (E.18)

For a reasonable choice of the timestep, this precession is generally
small with respect to the precession induced by real physical effects.
As an example, the precession of the periapsis due to the equatorial
bulge in an equatorial orbit is (e.g. Touma and Wisdom, 1998)

̇ 𝐽2 = 𝜔̇𝐽2 + 𝛺̇𝐽2 = 3
2

𝑛𝐽2
(

1 − 𝑒2
)2

𝑅2
⊕

𝑎2
. (E.19)

Considering a timestep 1∕100 of the surface orbital period, an orbit with
eccentricity 𝑒 = 0.2 and an equatorial bulge 𝐽2 = 0.0618 (corresponding
to a length of day of 4 hours for the Earth), we obtain

𝜔̇LF = −0.00224
(

𝑎
)−1

. (E.20)

𝜛̇𝐽2 5𝑅⊕
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Appendix F. Conservation of the angular momentum upon impact

We present here our method to preserve the angular momentum
up to machine precision when a merging or fragmenting impact oc-
curs. Since NcorpiN preserves the total momentum when computing
gravity27 but not the angular momentum, it makes more sense to
preserve the total momentum as well when resolving collisions. For this
reason, the possibility for the user of NcorpiN to preserve the angular
momentum during collisions has been removed in a recent update, and
NcorpiN now preserves the total momentum instead. However, we
still give the method here for reference. We recall that

𝒗cm =
𝑚1
𝑀

𝒗𝟏 +
𝑚2
𝑀

𝒗𝟐 and 𝒓cm =
𝑚1
𝑀

𝒓𝟏 +
𝑚2
𝑀

𝒓𝟐, (F.1)

are the velocity and position of the center of mass of the colliding pair,
whereas

𝑮 = 𝑚1𝒓1 × 𝒗1 + 𝑚2𝒓2 × 𝒗2, (F.2)

is the angular momentum to be conserved.

F.1. Case of a merger

If the collision results in a merger, then the outcome is a single
moonlet of mass 𝑀 = 𝑚1 + 𝑚2. The conservation of the total angular
momentum reads

𝑮 = 𝑀 𝒓̃ × 𝒗̃. (F.3)

Eq. (F.3) only has solutions if 𝒓̃ is perpendicular to 𝑮. Therefore, we
write

𝒓̃ = 𝒓cm + 𝛿𝒓̃, (F.4)

and we choose the smallest possible value of 𝛿𝒓̃ that verifies

𝑮 ⋅ 𝒓̃ = 𝑮 ⋅ 𝛿𝒓̃ +
𝑚1𝑚2
𝑀

𝒓2 ⋅ 𝛥𝒓 × 𝛥𝒗 = 0. (F.5)

Eq. (F.5) is of the form a ⋅𝒘 = b with unknown 𝒘 = 𝛿𝒓̃. We are lead to
minimize |𝒘|

2 under the constraint a ⋅𝒘 = b. We write

(𝜆,𝒘) = |𝒘|

2 + 𝜆 (a ⋅𝒘 − b) , (F.6)

where 𝜆 is a Lagrange multiplier. The gradient of  vanishes when
𝒘 = ba∕a2, and therefore we take

𝛿𝒓̃ =
𝑚1𝑚2
𝑀

𝒓2 ⋅ (𝛥𝒗 × 𝛥𝒓) 𝑮
𝐺2

. (F.7)

Once 𝒓̃ is known, Eq. (F.3) has the form 𝒂×𝒘 = 𝒃 with unknown 𝒘 = 𝒗̃.
ince 𝒂⋅𝒃 = 0, this equation has solutions given by28 𝒘 = (𝒃 × 𝒂) ∕𝑎2+𝛼𝒂
or any 𝛼 ∈ R. Therefore, we take

̃ = 1
𝑀𝑟2

𝑮 × 𝒓̃ + 𝛼𝒓̃, (F.8)

where we choose the real number 𝛼 in order to minimize |

|

𝒗̃ − 𝒗cm|

|

. We
ave

𝒗̃ − 𝒗cm|

|

2 = 𝛼2𝑟2 − 2𝛼𝒓̃ ⋅ 𝒗cm +𝐾, (F.9)

where 𝐾 does not depend on 𝛼, and the minimal value of |

|

𝒗̃ − 𝒗cm|

|

is thus reached at 𝛼 =
(

𝒓̃ ⋅ 𝒗cm
)

∕𝑟2. Finally, we achieve the conserva-
tion of the total angular momentum by giving to the unique moonlet
resulting from the merger the position and velocity

⎧

⎪

⎨

⎪

⎩

𝒓̃ = 𝒓cm +
𝑚1𝑚2
𝑀

𝒓2 ⋅ (𝛥𝒗 × 𝛥𝒓) 𝑮
𝐺2

,

𝒗̃ = 1
𝑀𝑟2

𝑮 × 𝒓̃ +
𝒓̃ ⋅ 𝒗cm
𝑟2

𝒓̃.
(F.10)

27 As long as the standard tree code is not used.
28 This comes from 𝒂 × 𝒃 × 𝒂 = 𝑎2𝒃 − 𝒂 ⋅ 𝒃 𝒂.
( ) ( )
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F.2. Case of a fragmentation

If the collision results in a full fragmentation (𝑚̃2 ≥ 𝑚(0)), then the
conservation of the total angular momentum reads

𝑮 = 𝑚̃𝒓̃ × 𝒗̃ + 𝑚̃2

𝑁̃
∑

𝑘=1

(

𝒓̃ + 𝒓̃′𝑘
)

×
(

𝒗̃ + 𝒗̃′𝑘
)

. (F.11)

n the case of a partial fragmentation (𝑚̃2 < 𝑚(0) ≤ 𝑚̌), the tail is re-
united into a single moonlet and the sum in Eq. (F.11) has only one
term. We define29

𝒈̃ = 𝑚̃2

𝑁̃
∑

𝑘=1
𝒓̃′𝑘 × 𝒗̃′𝑘,

̃ = 𝑚̃2

𝑁̃
∑

𝑘=1
𝒓̃′𝑘,

̃ = 𝑚̃2

𝑁̃
∑

𝑘=1
𝒗̃′𝑘,

(F.12)

nd Eq. (F.11) can be rewritten

= 𝑀 𝒓̃ × 𝒗̃ + 𝒓̃ × 𝒖̃ + 𝒔̃ × 𝒗̃ + 𝒈̃, (F.13)

with unknowns 𝒓̃ and 𝒗̃. If 𝒓̃ is known, then 𝒗̃ is given by the equation

𝒂 × 𝒗̃ = 𝒃, where
𝒂 = 𝑀 𝒓̃ + 𝒔̃ and 𝒃 = 𝑮 − 𝒓̃ × 𝒖̃ − 𝒈̃.

(F.14)

Eq. (F.14) only has solutions if 𝒂 ⋅ 𝒃 = 0, and we first constrain 𝒓̃ with
the equation 𝒂 ⋅ 𝒃 = 0. Then, we obtain 𝒗̃ from Eq. (F.14). There are
infinitely many choices for both 𝒓̃ and 𝒗̃, and in each case we choose
them in order to be as close as possible from the conservation of the
total momentum, that is, as close as possible to

𝑚̃𝒓̃ + 𝑚̃2

𝑁̃
∑

𝑘=1

(

𝒓̃ + 𝒓̃′𝑘
)

= 𝑀 𝒓̃ + 𝒔̃ = 𝑀𝒓cm,

𝑚̃𝒗̃ + 𝑚̃2

𝑁̃
∑

𝑘=1

(

𝒗̃ + 𝒗̃′𝑘
)

= 𝑀 𝒗̃ + 𝒖̃ = 𝑀𝒗cm.

(F.15)

In order to determine 𝒓̃, we thus write 𝑀 𝒓̃ + 𝒔̃ = 𝑀
(

𝒓cm + 𝛿𝒓̃
)

and we
choose the smallest 𝛿𝒓̃ that verifies 𝒂 ⋅ 𝒃 = 0. We have
𝒂 ⋅ 𝒃 = (𝑀 𝒓̃ + 𝒔̃) ⋅ (𝑮 − 𝒈̃) + 𝒓̃ ⋅ (𝒔̃ × 𝒖̃)

=
(

𝒓cm + 𝛿𝒓̃
)

⋅ (𝑀𝑮 −𝑀 𝒈̃ + 𝒔̃ × 𝒖̃) = 0.
(F.16)

e are left to minimize |𝛿𝒓̃| under a constraint of the form a ⋅ 𝛿𝒓̃ = b.
his was already done in the merger case with the theory of Lagrange
ultiplier and we have

𝒓̃ = ba

a2
= −

(

𝒓cm ⋅ a
)

a

a2
, where

= 𝑀 (𝑮 − 𝒈̃) + 𝒔̃ × 𝒖̃.
(F.17)

ow that 𝒓̃ is known, we can obtain 𝒗̃ from Eq. (F.14). The solutions
f Eq. (F.14) are given by

̃ = 𝒃 × 𝒂
𝑎2

+ 𝛼𝒂, (F.18)

here 𝛼 ∈ R. We choose for the real number 𝛼 the value that is closest
rom preserving the total momentum, that is, we choose the value of 𝛼
hat minimizes |

|

|

𝑀
(

𝒗̃ − 𝒗cm
)

+ 𝒖̃||
|

(see Eq. (F.15)). We have
1

𝑀2
|

|

|

𝑀
(

𝒗̃ − 𝒗cm
)

+ 𝒖̃||
|

2

= 𝑎2𝛼2 − 2𝛼
(

𝒗cm − 𝒖̃
𝑀

)

⋅ 𝒂 +𝐾,
(F.19)

29 For a partial fragmentation, the sums are reduced to one term and 𝑚̃2 has
to be replaced by 𝑚̌.
19 
where 𝐾 does not depend on 𝛼 and therefore, we choose

𝛼 =

(

𝒗cm − 𝒖̃∕𝑀
)

⋅ 𝒂
𝑎2

. (F.20)

e uniquely determined 𝒓̃ and 𝒗̃ in such a way that the total angular
omentum is conserved upon impact up to machine precision, whether

he collision results in a merger or in a fragmentation.
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