

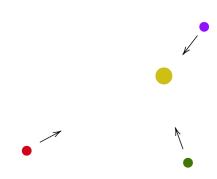
Libration centers in resonance chains

How accurate are averaged models?

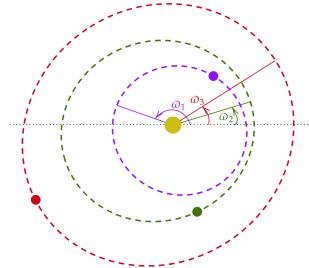
érémy Couturier

July 8th, 2025

Planetary systems do not have equilibria



Equilibria appear when considering the orbits only



At an equilibrium:

- $ightharpoonup \lambda_j$ are not constant ightharpoonup planets keep orbiting
- $ightharpoonup a_j$, e_j , i_j are constant (are variables of the Hamiltonian)
- lacktriangledown ϖ_j , Ω_j are not constant (are not variables of the Hamiltonian)

Only angles invariants by rotation are explicit variables of the Hamiltonian:

- ▶ $\varpi_1 \varpi_2$ and $2\varpi_1 \varpi_2 \varpi_3$ are constant angles
- ▶ $p_1\varpi_1 + p_2\varpi_2 + p_3\varpi_3$ is constant if $p_1 + p_2 + p_3 = 0$

The ϖ_j must all precess at the same frequency

What about a real system?

Averaged models have many approximations:

- ► Model limited to low-order in eccentricity
- Perturbative part evaluated at nominal semi-major axes
- ► Averaging over the fast angles of the Hamiltonian
- ► Contributions in $\mathcal{O}(m_j/m_0)^2$ disregarded

Fixed points vs libration center ? Chain 3:4:6:8

Fixed points

$$ightharpoonup \phi_1 = \lambda_1 - 2\lambda_2 + \lambda_3 = \mathsf{Cte}$$

$$ightharpoonup \phi_2 = \lambda_2 - 3\lambda_3 + 2\lambda_4 = \mathsf{Cte}$$

•
$$\phi_3 = \lambda_3 - \lambda_4 \rightarrow$$
 fast circulating at frequency ν_3

$$lackbox{} \phi_4 = -3\lambda_3 + 4\lambda_4
ightarrow {
m precessing}$$
 with the $arpi_j$ at frequency u_4

Libration center

$$ightharpoonup \phi_1 = \lambda_1 - 2\lambda_2 + \lambda_3 = \text{is periodic of period } \nu_3$$

•
$$\phi_2 = \lambda_2 - 3\lambda_3 + 2\lambda_4 =$$
is periodic of period ν_3

•
$$\phi_3 = \lambda_3 - \lambda_4 = \nu_3 t + \text{periodic of period } \nu_3$$

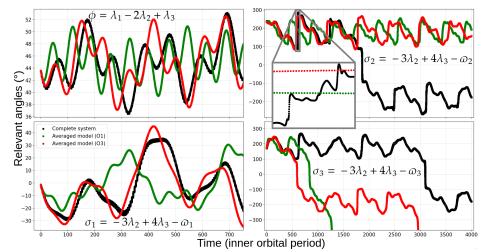
$$ightharpoonup \phi_4 = -3\lambda_3 + 4\lambda_4 = \nu_4 t + \text{periodic of period } \nu_3$$

•
$$\sigma_i = -3\lambda_3 + 4\lambda_4 - \varpi_i =$$
is periodic of period ν_3

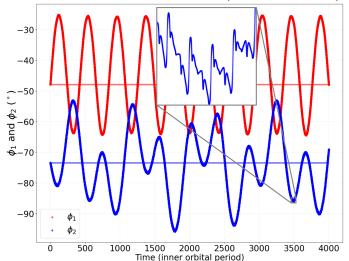
I am creating a software that

- lacktriangle Automatically studies a given chain $p_1:p_2:\cdots:p_n$
- ► Can manipulate both the averaged and complete Hamiltonian
- Can find fixed points
- Can find libration centers

Comparison averaged model and complete system for Kepler-60



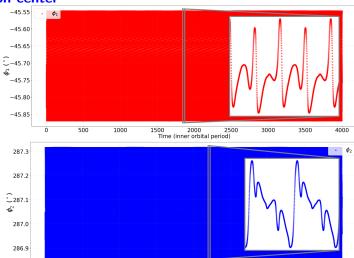
Integrating at a fixed point of the model (Chain 3:4:6:8)



Aptidal can find libration centers

```
Starting the search for a libration center.
Iteration n° 0 : (lbd 1, lbd 2, lbd 3) = (1.25334744208060, -1.45983490094329, 2.89556622661035)
                (vrp 1, vrp 2, vrp 3) = (0.25380634132068, 3.39539899491113, 0.25380634132261)
                (a_1, a_2, a_3) = (0.99998852270189, 1.16286469253592, 1.41375862174436)
                (e 1, e 2, e 3)
                                    = (0.002454540981114477, 0.005159761514032148, 0.001524850709017595)
Iteration n° 1 : (lbd 1, lbd 2, lbd 3) = (3.33330798274093, 5.26002118304277, 1.65227298241955)
                (vrp 1, vrp 2, vrp 3) = (0.47259744136410, 3.55948908857327, 0.32884036430858)
                (a_1, a_2, a_3) = (0.99995604711164, 1.16295562399184, 1.41371348167575)
                (e 1, e 2, e 3)
                                    = (0.002217198276845951, 0.004933795394239858, 0.001586720532824100)
nu 2 = dphi 2/dt = 1.27236541724418, nu 3 = dphi 3/dt = -0.07876080736703, nu 2/nu 3 = -16.15480414408320
n 1/n 2 = 1.25404770, n 2/n 3 = 1.34040046
Amplitude = 0.00010614976100192660, required = 0.0000001523192
Iteration n° 2 : (lbd 1, lbd 2, lbd 3) = (5.34223606186828, 5.60944294599532, 0.34354297783725)
                (vrp 1, vrp 2, vrp 3) = (0.54368907202440, 3.63009653651983, 0.38955128015460)
                (a \ 1. \ a \ 2. \ a \ 3) = (1.00006341837660, \ 1.16268722337893, \ 1.41381753291775)
                (e_1, e_2, e_3)
                                     = (0.002141230582097681, 0.004841700091519936, 0.001590312941810518)
nu 2 = dphi 2/dt = 1.27236445995839, nu 3 = dphi 3/dt = -0.07875696205510, nu 2/nu 3 = -16.15558074812828
n \frac{1}{n} = 1.25404551, n \frac{2}{n} = 1.34040446
Amplitude = 0.00000142053828396651, required = 0.0000001523192
Iteration n° 3 : (lbd 1. lbd 2. lbd 3) = (1.06334414862739. 5.95784468358055. 5.31723326140722)
                (vrp 1, vrp 2, vrp 3) = (0.31221360091268, 3.36623503005152, 0.04694359448298)
                (e_1, e_2, e_3)
                                     = (0.002448203293674203. 0.004917651499622591. 0.001399807102696927)
nu 2 = dphi 2/dt = 1.27236439623561, nu 3 = dphi 3/dt = -0.07875671810627, nu 2/nu 3 = -16.15562998090792
n \frac{1}{n} = 1.25404549, n \frac{2}{n} = 1.34040445
 Amplitude = 0.00000000107100540944, required = 0.0000001523192
```


Libration center



Ó

500

1000

2000

Time (inner orbital period)

1500

2500

3000

3500

Case of Kepler-60

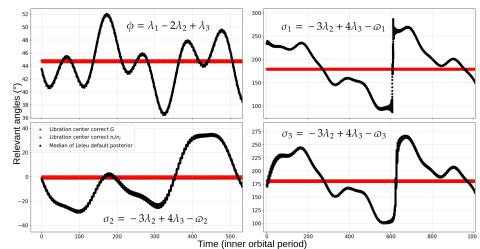
- Using the medians of Leleu's default posterior
- $(m_1, m_2, m_3) = (0.00001396343, 0.00001018846, 0.00001168183)$
- $(a_1, a_2, a_3) = (1, 1.16051594624160, 1.40732829159100)$
- $ightharpoonup (e_1, e_2, e_3) = (0.002443205783, 0.038988792391, 0.001929629299)$
- $(\lambda_1, \lambda_2, \lambda_3) = (1.22847960195, -1.45983490094, 2.89556622661)$
- $(\varpi_1, \varpi_2, \varpi_3) = (-0.67780162957, -2.86441121138, 0.35647438423)$

Kepler-60 has a family of libration centers parameterized by G

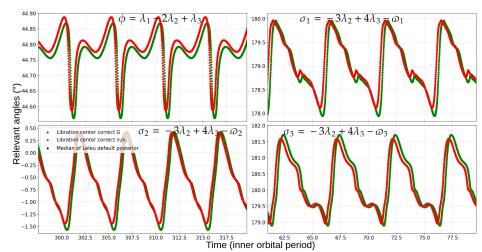
On this family, I looked for the libration center that:

- ▶ Has the same value of G as the median of Leleu's posterior
- ▶ Has period ratios n_1/n_2 and n_2/n_3 closest to those of Leleu's posterior

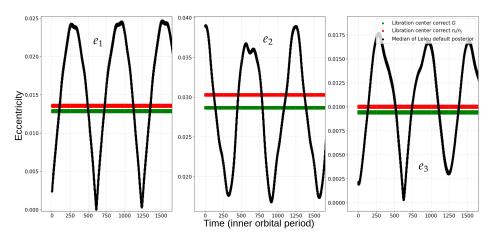
Kepler-60 with two possibles libration centers



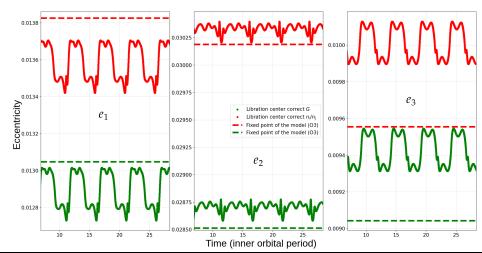
Both libration centers are close to each other



Kepler-60 with two possibles libration centers



The model (at order 3) is rather accurate



Kepler-60 could have converged towards one of them through tides

Possible state for Kepler-60 assuming convergence towards a libration center:

- $(m_1, m_2, m_3) = (0.00001396343, 0.00001018846, 0.00001168183)$
- $(a_1, a_2, a_3) = (1, 1.16084035919950, 1.40671871088901)$
- $ightharpoonup (e_1, e_2, e_3) = (0.013499025712, 0.030339683494, 0.010088416895)$
- $(\lambda_1, \lambda_2, \lambda_3) = (5.62613039777, 0.78403931790, 3.00767556394)$
- $(\varpi_1, \varpi_2, \varpi_3) = (0.27785699708, 3.41403973628, 0.26235900508)$

Thank you for your attention