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Abstract

In this document, I use a pseudo-Hamiltonian formalism is order to obtain an
analytical expression of the differential system of equations due to tides in the
constant-At model. I use Poincaré’s rectangular coordinates and calculations are
performed with the algebraic manipulator available as a python package.
The setup is a coplanar planetary system with N planets and I only consider tides
raised on the planets by the star and interacted with by the star.

1 Tidal model

I consider a planetary system of N planets of masses m; and radii R; orbiting a star of
mass mg. In this work, the Latin letter i is an index, while the Greek letter ¢ is /—1.
Planets are assumed to be extended bodies subject to tides. Let 7; be the position of
the star with respect to the j' planet in the frame (O, I,J, K) attached to the planet’s
rotation. Let 7 be a point within the planet in that same reference frame. The star raises
at r the potential per unit mass

Wir) = - —gm“f(r)lﬂ (’“"”), (1)
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called perturbing potential. In this expression, the P, are the Legendre polynomials.
Terms [ < 1 have a gradient independent on 7. Since tides come from a differential
acceleration within the planet, these terms do not contribute to tides and are discarded.


https://gitlab.unige.ch/delisle/celeries

Terms | > 3 are also discarded due to the small size of 7/r;. Using Py(2) = (32 — 1) /2,
the perturbing potential is therefore rewritten

Wir) = —Lgmor” (3 (r ?2 - 1) . 2)
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The perturbing potential W governs how the star redistributes mass in the planet. The
redistribution of mass raises a potential V| called perturbed potential. The star itself
or any other body feels the potential V' and is thus affected by tides. The challenge in
tidal theories is to obtain the perturbed potential V' from the perturbing potential .
Assuming these three hypothesis

(i) The tidal perturbations are small enough so that V' depends linearly on W,
(ii) The geophysical properties of planet j are constant over the tidal timescales,

(iii) Planet j is isotropic in the absence of tides,

it can be shown (Boué et al., ; Couturier, ) that, at the quadrupolar order, V' is
related to W by the convolution product
3
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Virt) =2 [ - t’)W(Rj,t’> a, (3)
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where kéj )(t) is the second Love distribution of planet j and characterizes its memory

of past stresses. In order to get rid of the convolution product, a common choice is the

constant-At model where k;ﬂ )(t) is taken proportional to a Dirac distribution

E (1) = k5 6(t — AtU). (4)

In this expression, the second Love number k) measures the ability of planet j to get
deformed by tides and the timelag AtU) measures its ability to dissipate energy when it
is deformed by tides. Injecting Eqgs. (2) and (1) into Eq. (3), I obtain for the perturbed
potential by unit mass felt by a body at position 7y

1 ; Qm0R5 . 2 .
Vi(ry) = —51{(2]) 7“57‘*5] [3 (’rk : frj) - 7“,%732} , (5)
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where, in the rotating frame, 75 = r;(t — AtY)). From now on, I denote ¢* = ¢(t — At¥))
for any quantity ¢. The full potential felt by a body of mass my, at ry is myV (7). Either
the star or any other planet can play the role of body k. Because the planet’s masses
are assumed much smaller than the star’s mass, I disregard cases where body k is a
planet and I only consider tides interacted with by the star, leading to r; = 7;. Calling
S = w; — wj the angle between 7; and 7}, with w; the true longitude of planet j, the
perturbed potential is rewritten

1 59moR;
2 rirs

Vi(rj) =

(3 cos® S — 1) : (6)

The perturbed potential is currently written in the frame attached to the planet’s rotation.
[ switch to the inertial reference frame (O, 4, 7, k) by writing
S =w; —wl — (0, - 03), (7)

where 0; is the sideral rotation angle of planet j.



2 Pseudo-Hamiltonian formalism

Tides can be included in a planetary system by adding the potential Ht(j ) = moV (r;)
to the Hamiltonian of the problem. The resulting scalar field is pseudo-Hamiltonian
because it depends on past times (in that case on time ¢ — At\)). However, the equations
of motions with tidal dissipation can still be obtained from the Hamilton equations if the
starred variables are kept constant while differentiating (because 77 is not a variable in
Eq. (), it is a time-dependent forcing).

However, unlike a regular Hamiltonian, this pseudo-Hamiltonian is merely a tool used
to obtain the contributions due to tides in the equations of motion. Because problems of
celestial mechanics are often dealt with efficiently using Poincaré’s canonical rectangular
coordinates (A;,x;; Aj, —tZ;), I use these coordinates from now on, and more specifically
their non-canonical version X; = 1/2/A; ;. A definition of these variables can be found
in Sect. 1.1. of . By conservation of the total angular momentum, the sideral
rotation 6; of planet j is also a variable of the problem. Its conjugated action is ©; =
ozjijJQ.éj, where aym;R5 is the principal moment of inertia of planet j and «; is a
dimensionless structure constant equal to 2/5 for an homogeneous planet. The kinetic
energy 7T; of rotation of the planet is

02
T = _—"9 8
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and I add it to the Hamiltonian. In order to work with dimensionless variables, I define

A; a O, 2 1/2
L= 9 ~1 .= 2 X = | 24 =r2x. 9
J Aj,O ) J Aj,()’ J Ajpx] 7 J ( )

where A, ¢ is a nominal value for A;, such that £; ~ 1. In order to stay as close as possible
from the regular Hamilton equations, I renormalize the Hamiltonian with

(”)
o _ H T 10
AT T Ay (10)

Writing H,; = ng )+ 7;, the tidal equations of motion are

L R WL N Vs = SO

oM,
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0, = —2 11
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all these partial derivatives being computed while keeping the starred quantities constant.
The expression of ng ) averaged over the mean motion of planet j is
j Mo A_6 px— 1 3 * * +OO'—~ j
HY = _nj’(]q‘jﬁjﬁj oLye (4 + 7 608 200 = A; = 0; +07) + l;:?,ﬁ) : (12)
where ¢; = kY )R? /a3, The coefficients Eéjk) of the expansion in eccentricity are given by

(Couturier et al., , Eq. (42) and Appendix B) up to k = 2 (beware that R, and X;
are written in this work instead of £; and X7).
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3 Contribution of tides to the equations of motions

Once the equations of motions are obtained from the Hamilton equations, the starred
variables can be given as a function of the non-starred variables. Because At is much
smaller than the secular timescales, I sunply make the substitution £ = £; and X7* = X J’>
For \; and 6;, I define Q;' = njoA; ) and w; = 0;/n; and a first- order expansmn in AY
ylelds
A )\* _ A(]) _ 1 A(]) _ £—3 —1
3TN T S L =L Wy
130 (13)
) /) 1
0; — 05 = 0,AY) = w,Q; L.

I compute the equations of motion and obtain, for the regular Poincaré coordinates

—+00

y d; n—1yvn—

X, = —gna L0, (Z (5 — poni @) X115 )
J n=1

. m _ too _
)\j = 6nj’0qj#£j 13 (1 + Z QQnX]nX]n s
J n=1

- (14)
Aj = —3n,00, ‘b”mc 2 (L5 w1 S KX
7,0434,0 Q j J 2n x5 x5 ’
] n=1
149 ,0 Mo - (7)) yvn yvn
0; =3 144f£12£,3 h9) XX
nJO J Q; RZm; wj+nZ:1 2n
where I recall that ¢; = k3 ) Re / ajo and
pén = Phy L% — Py,
k2 k/Qn‘C] ’ kélnwﬁ (15)
h’g hl2n[’j ’ hgnwjv
Using the algebraic manipulator , I computed the equations of motions up to order
9 in eccentricity and found the coefficients
( )= 1@@@ 5750747)
qo0,92, 94,96, 48) = ) ] ) 16 ) ] ) 49152 )
( )= (0 5 65 105 3745 52605)
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The conservation of the total angular momentum of the system reads (Couturier et al.,
, Appendix D)
hg) — k) +p%) =0 VneN, (17)

and the differential system of equations (1) does indeed preserve the total angular mo-
mentum at all orders in eccentricity.

The coefficients po,, and @9, do not intervene in the equation of conservation of the
total angular momentum because they correspond to elastic tides” and they do not affect
the angular momentum of the system. These coefficients can safely be evaluated to
zero in Eqgs. (11) when only the dissipative contributions of tides matter (e.g. when
computing the real parts of the eigenvalues around the equilibria). When studying a
mean-motion resonance, the differential system (11) can be evaluated at the keplerian
resonance A; = A;, by substituting £; = 1, but this kills all the dissipation in the
libration amplitude of the resonance angle and is generally not a viable approximation.

Sometimes, it is more useful to know the quantities D; and ¢7; instead of X;, where
X =/2D;/Aje®i and T recall that X} = \/2D; /Ao e = [,1/2X Writing

1 D; L. 12 1/2 g
X X’ <2D —|—ij> = §£j£j / Xj ‘|—£]/ Xj, (18)
I get
Dy = 30,05 ™M -5p (2009 130, 2 (B9 49y ) e
i = —3nj0 20 j 13w; + Z ( on T 2p2n+2) il
Qj my; n=1
. (19)
w; = 3n; OQJfE t (2 + Zp2n+2D )
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