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Abstract

In this document, I use a pseudo-Hamiltonian formalism is order to obtain an
analytical expression of the differential system of equations due to tides in the
constant-∆t model. I use Poincaré’s rectangular coordinates and calculations are
performed with the algebraic manipulator celeries available as a python package.
The setup is a coplanar planetary system with N planets and I only consider tides
raised on the planets by the star and interacted with by the star.

1 Tidal model
I consider a planetary system of N planets of masses mj and radii Rj orbiting a star of
mass m0. In this work, the Latin letter i is an index, while the Greek letter ι is

√
−1.

Planets are assumed to be extended bodies subject to tides. Let rj be the position of
the star with respect to the jth planet in the frame (O, I, J , K) attached to the planet’s
rotation. Let r be a point within the planet in that same reference frame. The star raises
at r the potential per unit mass

W ′(r) = − Gm0

|rj − r|
= −Gm0

rj

+∞∑
l=0

(
r

rj

)l

Pl

(
r · rj

rrj

)
, (1)

called perturbing potential. In this expression, the Pl are the Legendre polynomials.
Terms l ≤ 1 have a gradient independent on r. Since tides come from a differential
acceleration within the planet, these terms do not contribute to tides and are discarded.
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Terms l ≥ 3 are also discarded due to the small size of r/rj. Using P2(z) = (3z2 − 1) /2,
the perturbing potential is therefore rewritten

W (r) = −1
2

Gm0r
2

r3
j

(
3(r · rj)2

r2r2
j

− 1
)

. (2)

The perturbing potential W governs how the star redistributes mass in the planet. The
redistribution of mass raises a potential V , called perturbed potential. The star itself
or any other body feels the potential V and is thus affected by tides. The challenge in
tidal theories is to obtain the perturbed potential V from the perturbing potential W .
Assuming these three hypothesis

(i) The tidal perturbations are small enough so that V depends linearly on W ,

(ii) The geophysical properties of planet j are constant over the tidal timescales,

(iii) Planet j is isotropic in the absence of tides,
it can be shown (Boué et al., 2019; Couturier, 2022) that, at the quadrupolar order, V is
related to W by the convolution product

V (r, t) =
R3

j

r3

∫ t

−∞
k

(j)
2 (t − t′)W

(
Rj

r

r
, t′
)

dt′, (3)

where k
(j)
2 (t) is the second Love distribution of planet j and characterizes its memory

of past stresses. In order to get rid of the convolution product, a common choice is the
constant-∆t model where k

(j)
2 (t) is taken proportional to a Dirac distribution

k
(j)
2 (t) = κ

(j)
2 δ(t − ∆t(j)). (4)

In this expression, the second Love number κ
(j)
2 measures the ability of planet j to get

deformed by tides and the timelag ∆t(j) measures its ability to dissipate energy when it
is deformed by tides. Injecting Eqs. (2) and (4) into Eq. (3), I obtain for the perturbed
potential by unit mass felt by a body at position rk

V (rk) = −1
2

κ
(j)
2

Gm0R
5
j

r5
kr⋆5

j

[
3
(
rk · r⋆

j

)2
− r2

kr⋆2
j

]
, (5)

where, in the rotating frame, r⋆
j = rj(t − ∆t(j)). From now on, I denote ς⋆ = ς(t − ∆t(j))

for any quantity ς. The full potential felt by a body of mass mk at rk is mkV (rk). Either
the star or any other planet can play the role of body k. Because the planet’s masses
are assumed much smaller than the star’s mass, I disregard cases where body k is a
planet and I only consider tides interacted with by the star, leading to rk = rj. Calling
S = wj − w⋆

j the angle between rj and r⋆
j , with wj the true longitude of planet j, the

perturbed potential is rewritten

V (rj) = −1
2

κ
(j)
2

Gm0R
5
j

r3
j r⋆3

j

(
3 cos2 S − 1

)
. (6)

The perturbed potential is currently written in the frame attached to the planet’s rotation.
I switch to the inertial reference frame (O, i, j, k) by writing

S = wj − w⋆
j −

(
θj − θ⋆

j

)
, (7)

where θj is the sideral rotation angle of planet j.
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2 Pseudo-Hamiltonian formalism

Tides can be included in a planetary system by adding the potential H
(j)
t = m0V (rj)

to the Hamiltonian of the problem. The resulting scalar field is pseudo-Hamiltonian
because it depends on past times (in that case on time t−∆t(j)). However, the equations
of motions with tidal dissipation can still be obtained from the Hamilton equations if the
starred variables are kept constant while differentiating (because r⋆

j is not a variable in
Eq. (5), it is a time-dependent forcing).

However, unlike a regular Hamiltonian, this pseudo-Hamiltonian is merely a tool used
to obtain the contributions due to tides in the equations of motion. Because problems of
celestial mechanics are often dealt with efficiently using Poincaré’s canonical rectangular
coordinates (Λj, xj; λj, −ιx̄j), I use these coordinates from now on, and more specifically
their non-canonical version Xj =

√
2/Λj xj. A definition of these variables can be found

in Sect. 1.1. of this work1. By conservation of the total angular momentum, the sideral
rotation θj of planet j is also a variable of the problem. Its conjugated action is Θj =
αjmjR

2
j θ̇j, where αjmjR

2
j is the principal moment of inertia of planet j and αj is a

dimensionless structure constant equal to 2/5 for an homogeneous planet. The kinetic
energy Tj of rotation of the planet is

Tj =
Θ2

j

2αjmjR2
j

, (8)

and I add it to the Hamiltonian. In order to work with dimensionless variables, I define

Lj = Λj

Λj,0
≈ 1, Θ̃j = Θj

Λj,0
, X ′

j =
√

2
Λj,0

xj = L1/2
j Xj, (9)

where Λj,0 is a nominal value for Λj, such that Lj ≈ 1. In order to stay as close as possible
from the regular Hamilton equations, I renormalize the Hamiltonian with

H(j)
t = H

(j)
t

Λj,0
, Tj = Tj

Λj,0
. (10)

Writing Hj = H(j)
t + Tj, the tidal equations of motion are

L̇j = −∂Hj

∂λj

, λ̇j = ∂Hj

∂Lj

, Ẋ ′
j = −2ι

∂Hj

∂X̄ ′
j

, ˙̃Θj = −∂Hj

∂θj

, θ̇j = ∂Hj

∂Θ̃j

, (11)

all these partial derivatives being computed while keeping the starred quantities constant.
The expression of H(j)

t averaged over the mean motion of planet j is

H(j)
t = −nj,0qj

m0

mj

L−6
j L⋆−6

j

(
1
4

+ 3
4

cos 2(λj − λ⋆
j − θj + θ⋆

j ) +
+∞∑
k=1

Ξ(j)
2k

)
, (12)

where qj = κ
(j)
2 R5

j /a5
j,0. The coefficients Ξ(j)

2k of the expansion in eccentricity are given by
(Couturier et al., 2021, Eq. (42) and Appendix B) up to k = 2 (beware that Rj and Xj

are written in this work instead of Lj and X ′
j).

1https://jeremycouturier.com/3pla/SecondOrderMass.pdf

https://jeremycouturier.com/3pla/SecondOrderMass.pdf
https://jeremycouturier.com/3pla/SecondOrderMass.pdf
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3 Contribution of tides to the equations of motions
Once the equations of motions are obtained from the Hamilton equations, the starred
variables can be given as a function of the non-starred variables. Because ∆(j)

t is much
smaller than the secular timescales, I simply make the substitution L⋆

j = Lj and X ′⋆
j = X ′

j.
For λj and θj, I define Q−1

j = nj,0∆(j)
t and ωj = θ̇j/nj,0 and a first-order expansion in ∆(j)

t

yields

λj − λ⋆
j = nj∆(j)

t = nj

nj,0
nj,0∆(j)

t = L−3
j Q−1

j ,

θj − θ⋆
j = θ̇j∆(j)

t = ωjQ
−1
j .

(13)

I compute the equations of motion and obtain, for the regular Poincaré coordinates

Ẋj = −3nj,0
qj

Qj

m0

mj

L−13
j Xj

(+∞∑
n=1

(
p

(j)
2n − p2nιQj

)
Xn−1

j X̄n−1
j

)
,

λ̇j = 6nj,0qj
m0

mj

L−13
j

(
1 +

+∞∑
n=1

q2nXn
j X̄n

j

)
,

Λ̇j = −3nj,0Λj,0
qj

Qj

m0

mj

L−12
j

(
L−3

j − ωj +
+∞∑
n=1

k
(j)
2n Xn

j X̄n
j

)
,

θ̈j = 3n2
j,0α

−1
j

qj

Qj

a2
j,0

R2
j

m0

mj

L−12
j

(
L−3

j − ωj +
+∞∑
n=1

h
(j)
2n Xn

j X̄n
j

)
,

(14)

where I recall that qj = κ
(j)
2 R5

j /a5
j,0 and

p
(j)
2n = p′

2nL−3
j − p′′

2nωj,

k
(j)
2n = k′

2nL−3
j − k′′

2nωj,

h
(j)
2n = h′

2nL−3
j − h′′

2nωj,

(15)

Using the algebraic manipulator celeries, I computed the equations of motions up to order
9 in eccentricity and found the coefficients

(q0, q2, q4, q6, q8) =
(

1,
65
8

,
455
16

,
525
8

,
5 750 747

49 152

)
,

(p0, p2, p4, p6, p8, p10) =
(

0,
5
2

,
65
4

,
105
2

,
3745
32

,
52605
256

)
,

(p′
0, p′

2, p′
4, p′

6, p′
8, p′

10) =
(

0,
19
2

, 106,
4351

8
,
58 395

32
,
1 185 825

256

)
,

(p′′
0, p′′

2, p′′
4, p′′

6, p′′
8, p′′

10) =
(

0, 6,
351
8

,
637
4

,
12 705

32
,
12 411

16

)
,

(k′
0, k′

2, k′
4, k′

6, k′′
8) =

(
1, 23,

697
4

,
6045

8
,
170 284 187

73 728

)
,

(k′′
0 , k′′

2 , k′′
4 , k′′

6 , k′′
8) = (h′

0, h′
2, h′

4, h′
6, h′

8) =
(

1,
27
2

,
273
4

,
847
4

,
35 742 107

73 728

)
,

(h′′
0, h′′

2, h′′
4, h′′

6, h′′
8) =

(
1,

15
2

,
195
8

,
105
2

,
6 469 787

73 728

)
.

(16)
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The conservation of the total angular momentum of the system reads (Couturier et al.,
2021, Appendix D)

h
(j)
2n − k

(j)
2n + p

(j)
2n = 0 ∀n ∈ N, (17)

and the differential system of equations (14) does indeed preserve the total angular mo-
mentum at all orders in eccentricity.

The coefficients p2n and q2n do not intervene in the equation of conservation of the
total angular momentum because they correspond to elastic tides2 and they do not affect
the angular momentum of the system. These coefficients can safely be evaluated to
zero in Eqs. (14) when only the dissipative contributions of tides matter (e.g. when
computing the real parts of the eigenvalues around the equilibria). When studying a
mean-motion resonance, the differential system (14) can be evaluated at the keplerian
resonance Λj = Λj,0 by substituting Lj = 1, but this kills all the dissipation in the
libration amplitude of the resonance angle and is generally not a viable approximation.

Sometimes, it is more useful to know the quantities Ḋj and ϖ̇j instead of Ẋj, where
Xj =

√
2Dj/Λje

ιϖj and I recall that X ′
j =

√
2Dj/Λj,0 eιϖj = L1/2

j Xj. Writing

Ẋ ′
j = X ′

j

(
1
2

Ḋj

Dj

+ ιϖ̇j

)
= 1

2
L̇jL−1/2

j Xj + L1/2
j Ẋj, (18)

I get

Ḋj = −3nj,0
qj

Qj

m0

mj

L−13
j Dj

(
20L−3

j − 13ωj +
+∞∑
n=1

(
k

(j)
2n + 2p

(j)
2n+2

)
Dn

j

)
,

ϖ̇j = 3nj,0qj
m0

mj

L−13
j

(
5
2

+
+∞∑
n=1

p2n+2D
n
j

)
.

(19)
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