First order mean-motion resonance
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Abstract
In this document, I go over the analytical study of a first order mean-motion
resonance between a pair of planets and I revisit the Second Fundamental Model
of resonance (SFM) by Jacques Henrard and Anne Lemaitre. I also give a com-
pact analytical expression of the first integral of motion, independent from the
total angular momentum and the scaling factor, that only exists at first order in
eccentricity in the averaged problem.

1 Introduction

I consider two planets of masses m; and moy orbiting a star of mass mg. The problem
is assumed planar. I focus on the case where the pair of planets is close to a first order
mean motion resonance p : p+ 1. That is, the orbital periods 7; = 27/n; are near the
equality pTy ~ (p + 1) T for some integer p. In this work, subscripts 1 and 2 refer to the
inner and outer planet, respectively.



2 Hamiltonian of the problem

Denoting r; and v, the heliocentric position and barycentric speed of planet j, respec-

tively, the Hamiltonian of the problem can be written (Laskar and Robutel, ; Cou-
turier, , Eq. (2.53))

2 ~2 gmomj 71T Gmimg
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where 7#; = (v, is conjugated to r; and 5; = mem;/ (mo+ m;). 1 make use of the

Poincaré canonical coordinates (A;, Dj; Aj, —w,), where ), is the mean longitude, w; is

the longitude of the periapsis, A; = f3;,//1;a; is conjugated to A; and D; = A; (1 — /1= e?)
is conjugated to —w;. a; and e; are the semi-major axis and eccentricity, while p; =

G (mo +m;). In these coordinates, the Keplerian part of the Hamiltonian, due to star-
planet interactions, reads

j=1 253 ’I"j : 2A2
whereas the perturbative part, due to planet—planet interactions, can be written (Laskar
and Robutel, )

Hp(Aj,Dj; Nj, —w;) = (Z Ek,q(A; )ququququ) ik dithoda) (3)
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where X; = 1/2D; /A, exp(iw,;) and the upper bar denotes the complex conjugated. Be-
cause |X;| = e; + O(e?’-) and since the eccentricities are expected to remain small, this
serie expansion is generally truncated to some degree in eccentricity.

The coefficient =, depends on Ay and A; only through the ratio a;/as = ag2. In
fact, for most choices of the tuples k = (ki, ko) € Z? and q = (q1,q2, g3, qs) € N?, this
coefficient vanishes. Indeed, Hp is invariant by any rotation of angle i) along an axis
perpendicular to the orbital plane. That is, Hp(\;, @w;) = Hp(\; + ¥, w; + ¢) for all .
Injecting into Eq. (3), this yields the d’Alembert relation

Ekg#0 = ki+k+a+e@—q9g—q¢=0. (4)

For most choices of k = (ki,ky) € Z?, the angle kj\; + ko) is fast circulating, and the
corresponding term averages out to zero over timescales much longer than the orbital
periods. Only those such that npk; = n (p + 1) ks for some integer n are slow and do not
average out. Therefore, in order to only retain the secular (i.e. long-term) dynamics, I
only keep such values of k in Hp. After getting rid of all fast-circulating terms, d’Alembert
rule shows that only two terms of degree one in eccentricity remain in Eq. (3). That is,
there exist fi(aq2) and fo(aq2) such that

Gmim 2D
Hp = L2 (fl(alg),/Alcos[p)\l—(p+1))\2+w1]+
1

D)
f2(a12)\/ 2Al)2 cos[pA — (p+1) Ay + w2]> +0O (6]2-) .

(5)
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2.1 Transformation to relevant angle

The Hamiltonian H = Hgx + Hp currently has four degrees of freedom that are (A;; ;)
and (D;; —w;) for j € {1,2}. A linear change of variable adapted to the mean motion

resonance p : p + 1 allows two degrees of freedom to be lost. I define (e.g. Delisle, )
¥1 1 —1 0 0 )\1
w2/ _|=p p+1 00 A2 (6)
o1 —p p+1 1 0| |—w |’
09 —pP D +1 0 1 — T2

The change of variable is made canonical by transforming the actions according to

r p+1 p 0 0\ /(A

G|l [ 1 1 -1 —1||As 0
D, 0o 0 1 o]|D}|

D, 0 0 0 1) \D

The inverse transformation reads

A= (+1)p1+ @,

A2 = pp1 + 2,
W; = Y2 — 0y, (8)
Al =I - pEI,

Ao=-T+(p+1)¢€,

where ¢ = G+ D1+ Dy. The action variable G is the total angular momentum of the sys-
tem and is a conserved quantity. According to the Hamilton equation dG/dt = —0H /Dpo,
the angle (y should be absent from the Hamiltonian to guarantee the conservation of G.
Because the angle ¢, is fast-circulating in the p : p 4+ 1 resonance and since all fast-
circulating angles have been removed from the Hamiltonian, the angle ¢; should also
be absent from the Hamiltonian and its conjugated action I', often called scaling factor
(Michtchenko et al., : Delisle, : Petit et al., ) is also a conserved quantity of
the model.

Unlike G which is conserved even in the true system, I' is only conserved in the aver-
aged model. Another conserved quantity exists and allows for one more degree of freedom
to be lost (Sect. 3). For now, I am left with the two degrees of freedom (D;, Dy; 01, 03).
Since I' and G are two parameters of the model, it is customary to consider the single
parameter ¢ = G/T" instead. Furthermore, in order to work with dimensionless action
variables while still maintaining the form of Hamilton equations, I perform the rescaling

/
g:?, 1:? dj:DF], H':[g,e:;:g—i—dl—i-dg. 9)
After this rescaling, the Hamiltonian depends on exactly four parameters that are g, my,
mso and p. I explain in Sect. 4 how to reduce the dependency to one parameter only.
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D 1 2 3 1 5
fi 1.1004936978 2.0252226899 2.8404318567 3.6496182441 4.4561427851
—f, 0.4283898341 2.4840051833 3.2832567218 4.0837053718 4.8847062975

Table 1 — Coefficients f; appearing in Eq. (5) evaluated at a2 = (p/ (p + 1))%3.

2.2 Expression of the perturbative part

The system is expected to remain close to the commensurability pn; ~ (p + 1) ny, where
nj = 2w /T;. Therefore, I define nominal mean motions n; ¢ such that pny o= (p + 1) nap
and associated nominal semi-major axes a;o and A;o with

n; = nioaio and Aj70 = 5]‘« /G50 (10)

I expand the perturbative part of the Hamiltonian to order zero in AA; = A; — Aj
and the Keplerian part to order two because both expansions generate a remainder of
the same size (due to the smallness of the perturbation with respect to the Keplerian
part). For the perturbation, a expansion to order zero means that A; is simply evaluated
at Ajo. Similarly, ajp = a1/as is evaluated at a;/as0 = (p/ (p + 1))¥% (1 + O(mj/my)).
Because the perturbative part is already of size O(m;/my) relative to the Keplerian part,
quantities of the form 1+ O(m;/mg) are assumed to be unity in the perturbation. The
coefficients fi(ai2) and fo(aq2) in Eq. (O) take the form (e.g. Petit, )

a1y 0
fl (0512) = (p +1+ 212(9@12> b&%rl)(alg),

1 «app O _
fg(Oélg) = — (p + =+ -1z ) 557)2(0412) + CY121/25p,17

2 2 8@12
where the Laplace coefficient b%)(a) is given by (Brouwer and Clemence, )
1 1 2 cos(I™)
“00(a) = — / . 12
2°° (@) 2r Jo (14 a? —2acos™)’ (12)

The term af21/ 2(51,,1, that vanishes for all first-order MMR except the 1 : 2, comes from
the term 71 - 75 in Eq. (1). Once evaluated at ayp = (p/ (p+1))**, the coefficients
fi(a12) = f; depend only on p. I give them in Table | for 1 < p < 5. Defining the
constants C7 and Cy as C; ='/A;, I get

1/3 —-1/3
+1 < +1 4
Cr = pi1ip™ (p) +O(ma), 02:p+(p+1)ml<p> +O(ma), (13)
mq P mg mo p mo

and truncating to first order in eccentricity, the perturbative part of the Hamiltonian now

reads
H
H, = ?P _ M0 <f1 2C1dy cos o1 + fo1/2C5dy cos 02) . (14)

TTL()CQ
LA term of order 0 in eccentricity proportional to bg%(alg) exists in Eq. (5), but it only depends on
A; and becomes constant after the evaluation A; = Ajo. It does not affect the dynamics and I drop it.
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2.3 Expression of the Keplerian part

The Keplerian part is expanded to second order in AA; = A; — Aj. I obtain

3 AA2
HK = Z (njVOAAj — §njvo—A j) . (15)
je{1,2} 30
I define the variables AI' and AG by the canonical translation
Al'=T —(p+1) A1 — pAay,
(p ) A1 — pAap (16)

AG — G - Al,O — A270,

and I write A¢/ = AG+ D;+ D,. I normalize these quantities by I and write Ag = AG/T,
Ay = ATl'/T' = O(m;/mo) and Ae = Ae'/T' = Ag + d; + ds. T also rescale the Keplerian
part of the Hamiltonian by I' (to maintain the form of Hamilton equations) and obtain

,  Hy 3
Hie = 1 = —5mop A (0O + (p+1) Co) = 2(Cr + Co) Aedn|, (17)

where I recall that C; = I'/A; (. Constant terms that do not affect the dynamics were
dropped from HY.

3 Reduction to one degree of freedom

The rescaled Hamiltonian H' = H' +H'p, while compact, still has two degrees of freedom.
However, there exists yet another conserved quantity, besides G and I', that allows one
more degree of freedom to be lost. I first define the cartesian canonical coordinates

u; = y/2d; coso;,
j J J (18)

v; = \/2d;sino;.

In these coordinates, the Hamilton equations are u; = —0H'/0v; and v; = OH'/Ou;. The
expression of HY is unchanged but Ae = Ag + 3 (uf + v{ + u3 + v3). The perturbative
part now reads

minao

7-[’P = (flCll/2u1 + fngl/QuQ> = QU] + QaUs. (19)

moCa

Let U and V' be two complex numbers and ¢ an angle defined as

U=uy +iuy, V =wv;+ vy, ¢:arctan%. (20)
aq
Following Henrard et al., , I now perform the canonical rotation
U=¢e%U, V=¢9V, (21)

where U = z1 + izy and V = y1 + 1y2. The Keplerian part is still unchanged but
Ae = Ag+ 2 (2f +yf +23+y3). As for the perturbative part, using the identities
cos(arctan z) = 1/4/1 + 2% and sin(arctan z) = z/v/1 + 22, it now reads

/ :mlnw\/ﬁ 29
HP mOC2 f101+f202x1' ( )




I go back to polar canonical coordinates by writing

r1=V2Rcosr, y = V2Rsinr,
To = V2S5coss, 1y, =V2Ssins.

Once again, the Keplerian part is still given by Eq. (17) in these coordinates but Ae =
Ag+ R+ S. The perturbative part reads

My, = D20 [ 200 4 £205V/2R cosr (24)
mng

The Hamiltonian does not depend on the angle s, which means that its conjugated action
S is a first integral. I explicitly give the value of this new conserved quantity as a function
of ey, es, wy and @y in Sect. 6. I am now reduced to the single degree of freedom (R; 7).

(23)

4 Reduction to one parameter

By substituting Ag + S + R for Ae in the Keplerian part (Eq. (17)) and by removing

constant terms, the Hamiltonian H' = H' + H’» can be written
H'(R;r) = aR — BR* +vV2R cosr, (25)
where

a = =3n1,0p[(Ag +5) (pC1 + (p+1) C2) — (C1 + C2) Aq],

3

B = gnuep (pCr+ (p+1) Ca), (26)
min

7= VG B0
m002

This Hamiltonian is the so-called second fundamental model of resonance described by
Jacques Henrard and Anne Lemaitre (Henrard and Lemaitre, ). While simple enough
with only one degree of freedom, it still depends on the three parameters «, § and 7.
However, there exists a classical method to reduce the Hamiltonian (25) to one single

parameter 0. Following Henrard and Lemaitre, , I define
R H' S
g r Ka H w ’ 2 K ( )

and I choose K and w in such a way that” the coefficient in front of ¥? in H be —1 and
that in front of /2R cosr be 2. This gives me K = (25/7)72/3 and w = (25/7)74/3.
Equations of motions are no longer in canonical form as

dy w OH do w OH
- Koo M m T EKon (28)

However, the canonical form can be recovered by merely rescaling time. Writing 7 =

2Choices like putting a 2 in front of V2R cosr or putting a 34 in front of ¥ may seem arbitrary. Here,
they allow for the bifurcation to be at § = 1 while having the nicest form for the Hamiltonian (30).



Figure 1 — Phase Space of the Hamiltonian (32) for § € {0.8,1.1,2}. Elliptic fixed points are
shown with a black point, whereas the hyperbolic fixed point is identified as the intersection of
a level curve (the separatrix) with itself.

wt/K, we obtain d/dr = —0H/0o and do/dr = OH/OX. Since R =0 (e?) and
B/y = O (my/m;), the new action ¥ has order of magnitude ¥ = O (e?) O (mo/mj)Q/?’.
Defining the last parameter § as
1/3
4
i=a(55a) (29)

27587*

the one-parameter and one-degree-of-freedom Hamiltonian of the second fundamental
model of resonance reads

H(S;0) = 365 — 52 + 2v/2% cos . (30)
Because Ay = O(m;/my), o and therefore the parameter ¢ of the model is almost

proportional to the first integral Ag + S. Using the cartesian canonical coordinates
X =V2%coso, Y =V28sino, (31)
the Hamiltonian is written
H(X:Y) = 35 (X*+v?) - i (X*+ Y2)2 +2X, (32)
or equivalently
H(X;Y)=2X — 411 (X2 +v2 - 35)2. (33)
The equilibria of H are located at Y = 0 and X the roots of
X3 —35X —2=0. (34)
The equilibrium values of X are then
Xeq € {u +u, ju+j*v, j*u +jv} , where
(1+vi=&)”, (35)
(1 B m>1/3 |

u

(%



and j = exp(2in/3). With the constraint that X, is a real number, there is a bifurcation
at 0 = 1. When § < 1, only one (elliptic) fixed point exists, whereas for § > 1, three fixed
points exist, one of them being hyperbolic from which a separatrix emanates and defines
the mathematical resonance. In Fig. |, I plot the phase space of the Hamiltonian (32)
for different values of §, showing the bifurcation at 6 = 1. By linearizing the equations of
motions in the vicinity of the fixed points, it can be shown that a fixed point is hyperbolic
if, and only if, § < X? < 34.

5 From elliptic elements to the SFM

The functions ell2SFM and SFM2useful from the can convert
elliptic elements into the coordinates of the second fundamental model.

Resonance center
---- External circulation
---- Separatrix (fixed point)
—— Separatrix
e Kepler-1972
Ta/Th

-25 0.0 2.5 5.0 7.5 10.0 125 15.0

Figure 2 — Kepler-1972 in the Second Fundamental of Resonance. Despite a large uncertainty
on the eccentricities, yielding to a degeneracy on X and ¢, it is still very likely that this system
is in resonance.

Alternatively, the package is able to plot a sample of elliptic elements (for example
obtained through a posterior analysis or a numerical simulation) into the SFM with
function plot__ell2SFM. Because the parameter ¢ of the SFM depends on the elliptic
elements (see Eq. (29)), a sample of elliptic elements cannot be plotted into Fig. | because
the topology would be different for each point to plot. Therefore, the plot happens on
a figure where the horizontal axis is ¢ and on the vertical axis are X; and X, such that
(X1,0) and (X>,0) are on the same level-line as (X,Y') on Fig. 1. As an example, I plot
on Fig. 2 the system Kepler-1972 according to a posterior sample of A. Leleu.

3You can download the package at and pip install it


https://github.com/adleleu/resonantstate
https://github.com/adleleu/resonantstate

6 Resonant and secular eccentricities

Working around the transformations of Sect. 3, the variable R reads

f1 Cidy + f2 Cady + 2 f1 for/C1d1 Cads cos(oq — 02)

R = 36
J2Ch + J3C; (36)
whereas the first integral S is given by
g — f2C1dy + f3Cody — 21 f2/C1d1Cads cos(oy — 02) (37)
fTCL+ 30,
I define 120, 4 2 720, 4 f20
+ 2 1+ 2
Tp=11T022p and Tg=21"1' 12729 38
2 T 20k )
Using the relations ,/2C;d; = e; + O(e3) and 01 — 0y = wy — w1, the resonant and secular
eccentricities can be written
TR = _f} €1 + ﬁeg 26162 cos(wl — ’WQ>
f2 o C (39)
Tg=—12 22—}——1—12—1—266%8@ w
s e €1 e €5 162 cos(w) — wa)
Using the ratio
Clea _ f1 T2 <P+1>l/3:flcl (40)
€2.eq —famy b —fa Cy’

between the equilibrium values of e; at the fixed point (the one that exists for all values
of §), Tg can be written

€2,eq o2 €leq o2
Ts= el + 5+ 2e1eq cos(wy — wy). (41)
€1,eq €2.eq

This gives, for resonances 1: 2 to 5 : 6, respectively,
Tg1.0=0. 28561%61 + 3. 50132—62 + 2ey169 cos(wy — wo),
Y23 =1 07148%61 + 0. 93329—62 + 2eqe5 cos(wy — wa),
Tgss =1 05021—261 + 0. 95219—162 + 2e;64 cos(wy — ws), (42)

Tous = 1. 03873—61 + 0. 96271—62 + 2eye5 cos(wy — wa),
2 ml

Ts5 6 = =1. 03154761 + 0. 96943762 + 26162 cos(wl ’WQ).

Mo my
Using the equations of motions d; = —0H/do; and &; = IH/9d; derived from the
Hamiltonian Hx + Hp given by Eqgs. (11) and (17), it can be verified that,
as a9s . 0SS, 0S oS
— = ——dy + ——dy + 74— 4
dt {H;S} 3d1 1+ 8 6 10'1 + 80_20'2 O ( 3)

proving in another way that S, and therefore Tg, is indeed a conserved quantity.
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