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Abstract
In this document, I go over the analytical study of a first order mean-motion

resonance between a pair of planets and I revisit the Second Fundamental Model
of resonance (SFM) by Jacques Henrard and Anne Lemaître. I also give a com-
pact analytical expression of the first integral of motion, independent from the
total angular momentum and the scaling factor, that only exists at first order in
eccentricity in the averaged problem.

1 Introduction
I consider two planets of masses m1 and m2 orbiting a star of mass m0. The problem
is assumed planar. I focus on the case where the pair of planets is close to a first order
mean motion resonance p : p + 1. That is, the orbital periods Tj = 2π/nj are near the
equality pT2 ≈ (p+ 1)T1 for some integer p. In this work, subscripts 1 and 2 refer to the
inner and outer planet, respectively.
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2 Hamiltonian of the problem
Denoting rj and vj the heliocentric position and barycentric speed of planet j, respec-
tively, the Hamiltonian of the problem can be written (Laskar and Robutel, 1995; Cou-
turier, 2022, Eq. (2.53))

H =
2∑

j=1

(
r̃2

j

2βj

− Gm0mj

rj

)
+ r̃1 · r̃2

m0
− Gm1m2

|r1 − r2|
, (1)

where r̃j = βjvj is conjugated to rj and βj = m0mj/ (m0 +mj). I make use of the
Poincaré canonical coordinates (Λj, Dj;λj,−ϖj), where λj is the mean longitude, ϖj is
the longitude of the periapsis, Λj = βj

√
µjaj is conjugated to λj andDj = Λj

(
1 −

√
1 − e2

j

)
is conjugated to −ϖj. aj and ej are the semi-major axis and eccentricity, while µj =
G (m0 +mj). In these coordinates, the Keplerian part of the Hamiltonian, due to star-
planet interactions, reads

HK(Λj) =
2∑

j=1

(
r̃2

j

2βj

− Gm0mj

rj

)
= −

2∑
j=1

β3
jµ

2
j

2Λ2
j

, (2)

whereas the perturbative part, due to planet−planet interactions, can be written (Laskar
and Robutel, 1995)

HP (Λj, Dj;λj,−ϖj) =
∑

k∈Z2

∑
q∈N4

Ξk,q(Λj)Xq1
1 X

q2
2 X̄

q3
1 X̄

q4
2

 ei(k1λ1+k2λ2), (3)

where Xj =
√

2Dj/Λj exp(iϖj) and the upper bar denotes the complex conjugated. Be-
cause |Xj| = ej + O(e3

j) and since the eccentricities are expected to remain small, this
serie expansion is generally truncated to some degree in eccentricity.

The coefficient Ξk,q depends on Λ1 and Λ2 only through the ratio a1/a2 = α12. In
fact, for most choices of the tuples k = (k1, k2) ∈ Z2 and q = (q1, q2, q3, q4) ∈ N4, this
coefficient vanishes. Indeed, HP is invariant by any rotation of angle ψ along an axis
perpendicular to the orbital plane. That is, HP (λj, ϖj) = HP (λj + ψ,ϖj + ψ) for all ψ.
Injecting into Eq. (3), this yields the d’Alembert relation

Ξk,q ̸= 0 ⇒ k1 + k2 + q1 + q2 − q3 − q4 = 0. (4)

For most choices of k = (k1, k2) ∈ Z2, the angle k1λ1 + k2λ2 is fast circulating, and the
corresponding term averages out to zero over timescales much longer than the orbital
periods. Only those such that npk1 = n (p+ 1) k2 for some integer n are slow and do not
average out. Therefore, in order to only retain the secular (i.e. long-term) dynamics, I
only keep such values of k inHP . After getting rid of all fast-circulating terms, d’Alembert
rule shows that only two terms of degree one in eccentricity remain in Eq. (3). That is,
there exist f1(α12) and f2(α12) such that

HP = Gm1m2

a2

(
f1(α12)

√
2D1

Λ1
cos[pλ1 − (p+ 1)λ2 +ϖ1] +

f2(α12)
√

2D2

Λ2
cos[pλ1 − (p+ 1)λ2 +ϖ2]

)
+ O

(
e2

j

)
.

(5)
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2.1 Transformation to relevant angle
The Hamiltonian H = HK + HP currently has four degrees of freedom that are (Λj;λj)
and (Dj; −ϖj) for j ∈ {1, 2}. A linear change of variable adapted to the mean motion
resonance p : p+ 1 allows two degrees of freedom to be lost. I define (e.g. Delisle, 2017)

φ1
φ2
σ1
σ2

 =


1 −1 0 0

−p p+ 1 0 0
−p p+ 1 1 0
−p p+ 1 0 1



λ1
λ2

−ϖ1
−ϖ2

 . (6)

The change of variable is made canonical by transforming the actions according to
Γ
G
D1
D2

 =


p+ 1 p 0 0

1 1 −1 −1
0 0 1 0
0 0 0 1




Λ1
Λ2
D1
D2

 . (7)

The inverse transformation reads

λ1 = (p+ 1)φ1 + φ2,

λ2 = pφ1 + φ2,

ϖj = φ2 − σj,

Λ1 = Γ − pϵ′,

Λ2 = −Γ + (p+ 1) ϵ′,

(8)

where ϵ′ = G+D1 +D2. The action variable G is the total angular momentum of the sys-
tem and is a conserved quantity. According to the Hamilton equation dG/dt = −∂H/∂φ2,
the angle φ2 should be absent from the Hamiltonian to guarantee the conservation of G.
Because the angle φ1 is fast-circulating in the p : p + 1 resonance and since all fast-
circulating angles have been removed from the Hamiltonian, the angle φ1 should also
be absent from the Hamiltonian and its conjugated action Γ, often called scaling factor
(Michtchenko et al., 2008; Delisle, 2017; Petit et al., 2020) is also a conserved quantity of
the model.

Unlike G which is conserved even in the true system, Γ is only conserved in the aver-
aged model. Another conserved quantity exists and allows for one more degree of freedom
to be lost (Sect. 3). For now, I am left with the two degrees of freedom (D1, D2;σ1, σ2).
Since Γ and G are two parameters of the model, it is customary to consider the single
parameter g = G/Γ instead. Furthermore, in order to work with dimensionless action
variables while still maintaining the form of Hamilton equations, I perform the rescaling

g = G

Γ
, 1 = Γ

Γ
, dj = Dj

Γ
, H′ = H

Γ
, ϵ = ϵ′

Γ
= g + d1 + d2. (9)

After this rescaling, the Hamiltonian depends on exactly four parameters that are g, m1,
m2 and p. I explain in Sect. 4 how to reduce the dependency to one parameter only.
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p 1 2 3 4 5
f1 1.1904936978 2.0252226899 2.8404318567 3.6496182441 4.4561427851

−f2 0.4283898341 2.4840051833 3.2832567218 4.0837053718 4.8847062975

Table 1 — Coefficients fj appearing in Eq. (5) evaluated at α12 = (p/ (p + 1))2/3.

2.2 Expression of the perturbative part
The system is expected to remain close to the commensurability pn1 ≈ (p+ 1)n2, where
nj = 2π/Tj. Therefore, I define nominal mean motions nj,0 such that pn1,0 = (p+ 1)n2,0
and associated nominal semi-major axes aj,0 and Λj,0 with

µj = n2
j,0a

3
j,0 and Λj,0 = βj

√
µjaj,0. (10)

I expand the perturbative part of the Hamiltonian to order zero in ∆Λj = Λj − Λj,0
and the Keplerian part to order two because both expansions generate a remainder of
the same size (due to the smallness of the perturbation with respect to the Keplerian
part). For the perturbation, a expansion to order zero means that Λj is simply evaluated
at Λj,0. Similarly, α12 = a1/a2 is evaluated at a1,0/a2,0 = (p/ (p+ 1))2/3 (1 + O(mj/m0)).
Because the perturbative part is already of size O(mj/m0) relative to the Keplerian part,
quantities of the form 1 + O(mj/m0) are assumed to be unity in the perturbation. The
coefficients f1(α12) and f2(α12) in Eq. (5) take the form (e.g. Petit, 2021)

f1(α12) =
(
p+ 1 + α12

2
∂

∂α12

)
b

(p+1)
1/2 (α12),

f2(α12) = −
(
p+ 1

2
+ α12

2
∂

∂α12

)
b

(p)
1/2(α12) + α

−1/2
12 δp,1,

(11)

where the Laplace coefficient b(l)
s (α) is given by (Brouwer and Clemence, 1961)

1
2
b(l)

s (α) = 1
2π

∫ 2π

0

cos(lϡ)
(1 + α2 − 2α cosϡ)sdϡ. (12)

The term α
−1/2
12 δp,1, that vanishes for all first-order MMR except the 1 : 2, comes from

the term r̃1 · r̃2 in Eq. (1). Once evaluated at α12 = (p/ (p+ 1))2/3, the coefficients
fj(α12) = fj depend only on p. I give them in Table 1 for 1 ≤ p ≤ 5. Defining the
constants C1 and C2 as Cj = Γ/Λj,0, I get

C1 = p+1+pm2

m1

(
p+ 1
p

)1/3

+O
(
mj

m0

)
, C2 = p+(p+ 1) m1

m2

(
p+ 1
p

)−1/3

+O
(
mj

m0

)
, (13)

and truncating to first order in eccentricity, the perturbative part of the Hamiltonian now
reads1

H′
P = HP

Γ
= m1n2,0

m0C2

(
f1

√
2C1d1 cosσ1 + f2

√
2C2d2 cosσ2

)
. (14)

1A term of order 0 in eccentricity proportional to b
(0)
1/2(α12) exists in Eq. (5), but it only depends on

Λj and becomes constant after the evaluation Λj = Λj,0. It does not affect the dynamics and I drop it.
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2.3 Expression of the Keplerian part
The Keplerian part is expanded to second order in ∆Λj = Λj − Λj,0. I obtain

HK =
∑

j∈{1,2}

(
nj,0∆Λj − 3

2
nj,0

∆Λ2
j

Λj,0

)
. (15)

I define the variables ∆Γ and ∆G by the canonical translation

∆Γ = Γ − (p+ 1) Λ1,0 − pΛ2,0,

∆G = G− Λ1,0 − Λ2,0,
(16)

and I write ∆ϵ′ = ∆G+D1+D2. I normalize these quantities by Γ and write ∆g = ∆G/Γ,
∆γ = ∆Γ/Γ = O(mj/m0) and ∆ϵ = ∆ϵ′/Γ = ∆g + d1 + d2. I also rescale the Keplerian
part of the Hamiltonian by Γ (to maintain the form of Hamilton equations) and obtain

H′
K = HK

Γ
= −3

2
n1,0p

[
∆ϵ2 (pC1 + (p+ 1)C2) − 2 (C1 + C2) ∆ϵ∆γ

]
, (17)

where I recall that Cj = Γ/Λj,0. Constant terms that do not affect the dynamics were
dropped from H′

K .

3 Reduction to one degree of freedom
The rescaled Hamiltonian H′ = H′

K +H′
P , while compact, still has two degrees of freedom.

However, there exists yet another conserved quantity, besides G and Γ, that allows one
more degree of freedom to be lost. I first define the cartesian canonical coordinates

uj =
√

2dj cosσj,

vj =
√

2dj sin σj.
(18)

In these coordinates, the Hamilton equations are u̇j = −∂H′/∂vj and v̇j = ∂H′/∂uj. The
expression of H′

K is unchanged but ∆ϵ = ∆g + 1
2 (u2

1 + v2
1 + u2

2 + v2
2). The perturbative

part now reads

H′
P = m1n2,0

m0C2

(
f1C

1/2
1 u1 + f2C

1/2
2 u2

)
= α1u1 + α2u2. (19)

Let U and V be two complex numbers and ϕ an angle defined as

U = u1 + iu2, V = v1 + iv2, ϕ = arctan α2

α1
. (20)

Following Henrard et al., 1986, I now perform the canonical rotation

U = eiϕŨ , V = eiϕṼ , (21)

where Ũ = x1 + ix2 and Ṽ = y1 + iy2. The Keplerian part is still unchanged but
∆ϵ = ∆g + 1

2 (x2
1 + y2

1 + x2
2 + y2

2). As for the perturbative part, using the identities
cos(arctan z) = 1/

√
1 + z2 and sin(arctan z) = z/

√
1 + z2, it now reads

H′
P = m1n2,0

m0C2

√
f 2

1C1 + f 2
2C2 x1. (22)
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I go back to polar canonical coordinates by writing

x1 =
√

2R cos r, y1 =
√

2R sin r,
x2 =

√
2S cos s, y2 =

√
2S sin s.

(23)

Once again, the Keplerian part is still given by Eq. (17) in these coordinates but ∆ϵ =
∆g +R + S. The perturbative part reads

H′
P = m1n2,0

m0C2

√
f 2

1C1 + f 2
2C2

√
2R cos r. (24)

The Hamiltonian does not depend on the angle s, which means that its conjugated action
S is a first integral. I explicitly give the value of this new conserved quantity as a function
of e1, e2, ϖ1 and ϖ2 in Sect. 6. I am now reduced to the single degree of freedom (R; r).

4 Reduction to one parameter
By substituting ∆g + S + R for ∆ϵ in the Keplerian part (Eq. (17)) and by removing
constant terms, the Hamiltonian H′ = H′

K + H′
P can be written

H′(R; r) = αR − βR2 + γ
√

2R cos r, (25)

where

α = −3n1,0p [(∆g + S) (pC1 + (p+ 1)C2) − (C1 + C2) ∆γ] ,

β = 3
2
n1,0p (pC1 + (p+ 1)C2) ,

γ = m1n2,0

m0C2

√
f 2

1C1 + f 2
2C2.

(26)

This Hamiltonian is the so-called second fundamental model of resonance described by
Jacques Henrard and Anne Lemaître (Henrard and Lemaitre, 1983). While simple enough
with only one degree of freedom, it still depends on the three parameters α, β and γ.
However, there exists a classical method to reduce the Hamiltonian (25) to one single
parameter δ. Following Henrard and Lemaitre, 1983, I define

σ = r, Σ = R

K
, H = H′

ω
, Σ2 = S

K
(27)

and I choose K and ω in such a way that2 the coefficient in front of Σ2 in H be −1 and
that in front of

√
2R cos r be 2. This gives me K = (2β/γ)−2/3 and ω = β (2β/γ)−4/3.

Equations of motions are no longer in canonical form as

dΣ
dt

= − ω

K

∂H
∂σ

, and dσ

dt
= ω

K

∂H
∂Σ

. (28)

However, the canonical form can be recovered by merely rescaling time. Writing τ =
2Choices like putting a 2 in front of

√
2R cos r or putting a 3δ in front of Σ may seem arbitrary. Here,

they allow for the bifurcation to be at δ = 1 while having the nicest form for the Hamiltonian (30).
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Figure 1 — Phase Space of the Hamiltonian (32) for δ ∈ {0.8, 1.1, 2}. Elliptic fixed points are
shown with a black point, whereas the hyperbolic fixed point is identified as the intersection of
a level curve (the separatrix) with itself.

ωt/K, we obtain dΣ/dτ = −∂H/∂σ and dσ/dτ = ∂H/∂Σ. Since R = O
(
e2

j

)
and

β/γ = O (m0/mj), the new action Σ has order of magnitude Σ = O
(
e2

j

)
O (m0/mj)2/3.

Defining the last parameter δ as

δ = α

(
4

27βγ2

)1/3

, (29)

the one-parameter and one-degree-of-freedom Hamiltonian of the second fundamental
model of resonance reads

H(Σ;σ) = 3δΣ − Σ2 + 2
√

2Σ cos σ. (30)

Because ∆γ = O(mj/m0), α and therefore the parameter δ of the model is almost
proportional to the first integral ∆g + S. Using the cartesian canonical coordinates

X =
√

2Σ cos σ, Y =
√

2Σ sin σ, (31)

the Hamiltonian is written

H(X;Y ) = 3
2
δ
(
X2 + Y 2

)
− 1

4
(
X2 + Y 2

)2
+ 2X, (32)

or equivalently
H(X;Y ) = 2X − 1

4
(
X2 + Y 2 − 3δ

)2
. (33)

The equilibria of H are located at Y = 0 and X the roots of

X3 − 3δX − 2 = 0. (34)

The equilibrium values of X are then

Xeq ∈
{
u+ v, ju+ j2v, j2u+ jv

}
,where

u =
(
1 +

√
1 − δ3

)1/3
,

v =
(
1 −

√
1 − δ3

)1/3
,

(35)
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and j = exp(2iπ/3). With the constraint that Xeq is a real number, there is a bifurcation
at δ = 1. When δ < 1, only one (elliptic) fixed point exists, whereas for δ > 1, three fixed
points exist, one of them being hyperbolic from which a separatrix emanates and defines
the mathematical resonance. In Fig. 1, I plot the phase space of the Hamiltonian (32)
for different values of δ, showing the bifurcation at δ = 1. By linearizing the equations of
motions in the vicinity of the fixed points, it can be shown that a fixed point is hyperbolic
if, and only if, δ < X2 < 3δ.

5 From elliptic elements to the SFM
The functions ell2SFM and SFM2useful from the resonant state package3 can convert
elliptic elements into the coordinates of the second fundamental model.

Figure 2 — Kepler-1972 in the Second Fundamental of Resonance. Despite a large uncertainty
on the eccentricities, yielding to a degeneracy on X and δ, it is still very likely that this system
is in resonance.

Alternatively, the package is able to plot a sample of elliptic elements (for example
obtained through a posterior analysis or a numerical simulation) into the SFM with
function plot_ell2SFM. Because the parameter δ of the SFM depends on the elliptic
elements (see Eq. (29)), a sample of elliptic elements cannot be plotted into Fig. 1 because
the topology would be different for each point to plot. Therefore, the plot happens on
a figure where the horizontal axis is δ and on the vertical axis are X1 and X2 such that
(X1, 0) and (X2, 0) are on the same level-line as (X,Y ) on Fig. 1. As an example, I plot
on Fig. 2 the system Kepler-1972 according to a posterior sample of A. Leleu.

3You can download the package at https://github.com/adleleu/resonantstate and pip install it

https://github.com/adleleu/resonantstate
https://github.com/adleleu/resonantstate
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6 Resonant and secular eccentricities
Working around the transformations of Sect. 3, the variable R reads

R = f 2
1C1d1 + f 2

2C2d2 + 2f1f2
√
C1d1C2d2 cos(σ1 − σ2)

f 2
1C1 + f 2

2C2
, (36)

whereas the first integral S is given by

S = f 2
1C1d2 + f 2

2C2d1 − 2f1f2
√
C1d1C2d2 cos(σ1 − σ2)

f 2
1C1 + f 2

2C2
. (37)

I define
ΥR = f 2

1C1 + f 2
2C2

−2f1f2
R, and ΥS = f 2

1C1 + f 2
2C2

−2f1f2
S. (38)

Using the relations
√

2Cjdj = ej + O(e3
j) and σ1 −σ2 = ϖ2 −ϖ1, the resonant and secular

eccentricities can be written

ΥR = f1

−f2
e2

1 + −f2

f1
e2

2 − 2e1e2 cos(ϖ1 −ϖ2)

ΥS = −f2

f1

C2

C1
e2

1 + f1

−f2

C1

C2
e2

2 + 2e1e2 cos(ϖ1 −ϖ2)
(39)

Using the ratio
e1,eq

e2,eq
= f1

−f2

m2

m1

(
p+ 1
p

)1/3

= f1

−f2

C1

C2
, (40)

between the equilibrium values of ej at the fixed point (the one that exists for all values
of δ), ΥS can be written

ΥS = e2,eq

e1,eq
e2

1 + e1,eq

e2,eq
e2

2 + 2e1e2 cos(ϖ1 −ϖ2). (41)

This gives, for resonances 1 : 2 to 5 : 6, respectively,

ΥS,1:2 = 0.28561m1

m2
e2

1 + 3.50132m2

m1
e2

2 + 2e1e2 cos(ϖ1 −ϖ2),

ΥS,2:3 = 1.07148m1

m2
e2

1 + 0.93329m2

m1
e2

2 + 2e1e2 cos(ϖ1 −ϖ2),

ΥS,3:4 = 1.05021m1

m2
e2

1 + 0.95219m2

m1
e2

2 + 2e1e2 cos(ϖ1 −ϖ2),

ΥS,4:5 = 1.03873m1

m2
e2

1 + 0.96271m2

m1
e2

2 + 2e1e2 cos(ϖ1 −ϖ2),

ΥS,5:6 = 1.03154m1

m2
e2

1 + 0.96943m2

m1
e2

2 + 2e1e2 cos(ϖ1 −ϖ2).

(42)

Using the equations of motions ḋj = −∂H/∂σj and σ̇j = ∂H/∂dj derived from the
Hamiltonian HK + HP given by Eqs. (14) and (17), it can be verified that,

dS

dt
= {H, S} = ∂S

∂d1
ḋ1 + ∂S

∂d2
ḋ2 + ∂S

∂σ1
σ̇1 + ∂S

∂σ2
σ̇2 = 0, (43)

proving in another way that S, and therefore ΥS, is indeed a conserved quantity.
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