

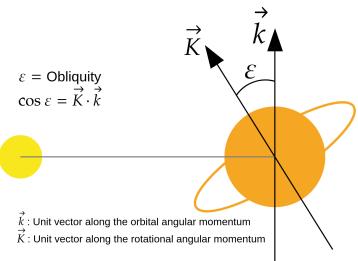
Tilting Uranus via the migration of an ancient satellite

Saillenfest et al. 2022

Jérémy Couturier

November 30th, 2023

What is the obliquity?

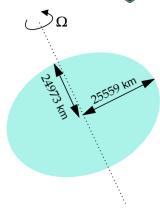


Obliquities in the Solar system

Planet	Obliquity		
Mercury	0.034°		
Venus	177.4°		
Earth	23.44°		
Mars	25.19°		
Jupiter	3.13°		
Saturn	26.73°		
Uranus	97.77°		
Neptune	28.32°		

- ▶ Laskar & Robutel (1993): The inner planets' obliquities were chaotic at some point \rightarrow Not primordial.
- ► Planets are expected to form with near-zero obliquity.
- ► The outer planets' obliquities should be primordial but only Jupiter's is
- ► Why is Uranus lying on its side ?

Equatorial bulge



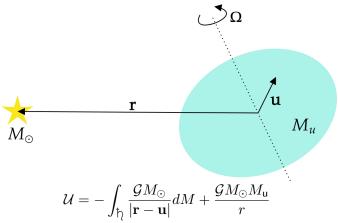
- ightharpoonup Uranus is slightly flattened due to its rotation ightarrow equatorial bulge
- ► The pull of the Sun and of the satellite on this bulge yields a torque

How does Uranus react to this torque?

Colombo model (Colombo, 1966)

- ▶ I present a simple Hamiltonian version of the Colombo model.
- ▶ The Hamiltonian is written $\mathcal{H} = \mathcal{T} + \mathcal{U}$ where
- $ightharpoonup \mathcal{T}$ is the kinetic energy of rotation of Uranus on itself
- $ightharpoonup \mathcal{U}$ is the potential energy associated with the interaction between the bulge and the Sun.
- ightharpoonup To only retain the long-term evolution of the rotation, $\mathcal U$ is averaged over one orbital period of Uranus.

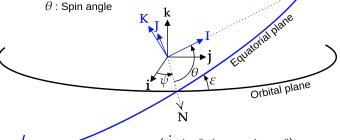
What about the potential energy ?



$$\langle \mathcal{U} \rangle := \frac{1}{T} \int_0^T \mathcal{U} dt = -\frac{\mathcal{G} M_{\odot} \left(C - A \right)}{4 a_{\odot}^3 \left(1 - e_{\odot}^2 \right)^{3/2}} \left(3 \cos^2 \varepsilon - 1 \right)$$

 ${\cal C}$ and ${\cal A}$ are the polar and equatorial moment of inertia, respectively

What about the kinetic energy?



$$\mathbf{\Omega} = \dot{\psi}\mathbf{k} + \dot{\varepsilon}\mathbf{N} + \dot{\theta}\mathbf{K} = \begin{pmatrix} \dot{\psi}\sin\theta\sin\varepsilon + \dot{\varepsilon}\cos\theta\\ \dot{\psi}\cos\theta\sin\varepsilon - \dot{\varepsilon}\sin\theta\\ \dot{\psi}\cos\varepsilon + \dot{\theta} \end{pmatrix}_{\mathbf{I},\mathbf{i}}$$

$$\mathcal{T} = rac{1}{2}\,{}^t \mathbf{\Omega} \mathcal{I} \mathbf{\Omega} \qquad \mathcal{I} = egin{pmatrix} A & 0 & 0 \ 0 & A & 0 \ 0 & 0 & C \end{pmatrix}$$

Generalized coordinates and momenta

$$\mathbf{q} = \begin{pmatrix} \psi \\ \varepsilon \\ \theta \end{pmatrix} \qquad \mathbf{p} := \frac{\partial \mathcal{T}}{\partial \dot{\mathbf{q}}}$$

Hamilton equations

$$\dot{\mathbf{q}} = \frac{\partial \mathcal{H}}{\partial \mathbf{p}} \qquad \dot{\mathbf{p}} = -\frac{\partial \mathcal{H}}{\partial \mathbf{q}}$$

Secular variations of the rotation of Saturn

 $\dot{\theta} = \mathsf{Cste} \ \to \ \mathsf{Length} \ \mathsf{of} \ \mathsf{day} = \mathsf{Cste}$

$$\dot{\varepsilon}=0~\rightarrow~{\rm No}~{\rm change}~{\rm in}~{\rm obliquity}$$

$$\dot{\psi} = -\frac{3}{2}\lambda^{-1}\frac{n^2}{\dot{\theta}}\left(1 - e_{\odot}^2\right)^{-3/2}J_2\cos\varepsilon$$

where n is the mean motion of Uranus, e_{\odot} the eccentricity of its orbit, $J_2 = (C-A)/M_{\rm u}R_{\rm u}^2$ its second zonal harmonic and $\lambda = C/M_{\rm u}R_{\rm u}^2$ is the normalized polar moment of inertia of Uranus.

Precession of the equinox

The pull of the Sun on the equatorial bulge yields a wobble of the axis of rotation with frequency

$$\dot{\psi} = -p\cos\varepsilon = -\frac{3}{2}\frac{n^2}{\dot{\theta}}\left(1 - e_{\odot}^2\right)^{-3/2}\frac{J_2}{\lambda}\cos\varepsilon$$

For Uranus, the corresponding period is

$$T=rac{2\pi}{i \dot{b}}=22.8~\mathrm{Myr}$$

But what about the contribution from potential satellites ?

Contribution from a satellite There are two ways satellites can affect the frequency of the wobble

- ► If the satellite is far away and not in the equatorial plane, it pulls on the bulge like the Sun does.
- ▶ If it is a close-in satellite, it is locked to the equatorial plane and artificially contributes to increase the J_2 of the planet. → It gives leverage to the Sun.

Correction of the equinox precession with a satellite

$$\dot{\psi} = -p \left(\cos \varepsilon + \eta \frac{a^2}{r_M^2} \frac{\sin(2\varepsilon - 2I_L)}{2\sin \varepsilon} \right)$$

where $\eta=m_{\rm s}r_M^2/(2M_{\rm u}J_2R_{\rm u}^2)$ is the dimensionless mass parameter, $r_M\approx 53R_{\rm u}$ and I_L is a inclination whose value depends on whether the satellite is in the close-in or far away regime.

The Colombo model applied to Uranus does not predict obliquity variations.

What caused Uranus' obliquity to increase from $\sim 0^{\circ}$ to 97.77° ? Previous studies (e.g. Slattery et al. 1992) suggest that giant impacts during the late heavy bombardment tilted Uranus.

Why is this unlikely?

- ► Uranus and Neptune have strikingly similar masses, radii and spin rates, but very different obliquities (98° vs 28°).
- ▶ They also have similar atmospheric dynamics and magnetic fields.
- ▶ One does not expect such similarities from random collisions.

We would expect more diversity if Uranus and Neptune's final formation stages were determined by random collisions.

Let us look for a smoother process · · · A resonance of course !

Planetary motion in the solar system \rightarrow Forcing on Uranus' spin dynamics.

Fourier decomposition of Laskar 1990

$$e_{\odot}e^{i\varpi_{\odot}} = \sum_{k \in \mathbb{Z}} E_k e^{i\left(\mu_k t + \theta_k^{(0)}\right)} \qquad \sin(i_{\odot}/2)e^{i\Omega_{\odot}} = \sum_{k \in \mathbb{Z}} S_k e^{i\left(\nu_k t + \phi_k^{(0)}\right)}$$

 $ightharpoonup e_{\odot}$: Uranus' eccentricity

▶ ϖ_{\odot} : Uranus' longitude of periapsis

 $ightharpoonup i_{\odot}$: Uranus' inclination on the ecliptic

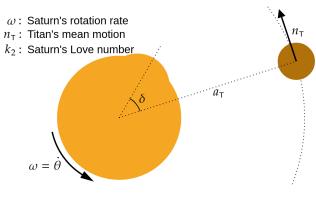
 $lackbox{}{}$ Ω_{\odot} : Uranus' longitude of the ascending node

 μ_k and ν_k are the fundamental frequencies of the Solar system.

Uranus frequencies (Saillenfest et al. 2022 from Laskar 1990)

k	Identification(*)	v_k (" yr ⁻¹)	$S_k \times 10^9$	$\phi_k^{(0)}$ (°)
1	<i>S</i> ₅	0.00000	13 773 646	107.59
2	s_7	-3.00557	8 871 413	320.33
3	s_8	-0.69189	563 042	203.96
4	s_6	-26.33023	347 710	307.29
5	$-g_5 + g_6 + s_6$	-2.35835	299 979	224.75
6	$-g_5 + g_7 + s_7$	-4.16482	187 859	231.66
7	$g_5 - g_7 + s_7$	-1.84625	182 575	224.56
8	$-g_7 + g_8 + s_8$	-3.11725	59 252	146.97
9	$g_6 - g_7 + s_6$	-1.19906	25 881	313.99
10	$2g_5 - s_7$	11.50319	18 941	101.01
11	$g_5 + g_7 - s_7$	10.34389	11 930	11.68
12	$g_5 - g_6 + s_7$	-26.97744	10 362	225.10
13	s_1	-5.61755	10 270	348.70
14	$-g_5 + g_6 + s_7$	20.96631	7346	237.78
15	$g_7 - g_8 + s_7$	-0.58033	5474	197.32

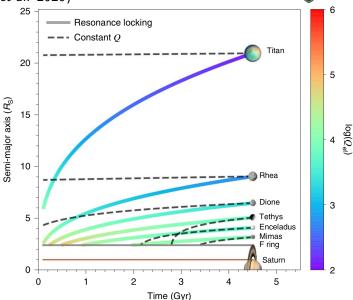
Why do satellite migrate?



$$\frac{\dot{a}_{\mathsf{T}}}{a_{\mathsf{T}}} = 3\frac{k_2}{Q} \frac{m_{\mathsf{T}}}{M_{\mathsf{s}}} \left(\frac{R_{\mathsf{s}}}{a_{\mathsf{T}}}\right)^5 n_{\mathsf{T}} \qquad Q = \frac{1}{\tan \delta}$$

Fast tidal migration of Saturnian moons (Lainey et al. 2020)

ROCHESTER ROCHESTER

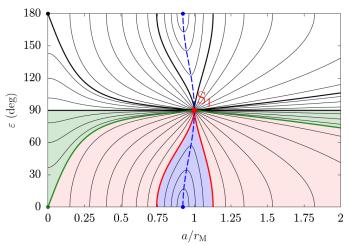


Mechanism of tilting

$$\dot{\psi} = -p \left(\cos \varepsilon + \eta \frac{a^2}{r_M^2} \frac{\sin(2\varepsilon - 2I_L)}{2\sin \varepsilon}\right) = \nu_k \approx \mathsf{Cst}$$

- \blacktriangleright If the semi-major axis a of the ancient satellite increases due to tides
- ▶ Then $\cos \varepsilon$ must decrease to maintain the relation.
- \blacktriangleright The level lines of $\dot{\psi}$ are followed during the tilting

Level lines of $\dot{\psi}$



Pink region

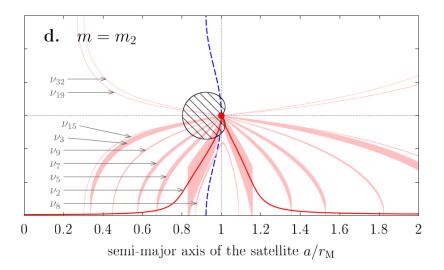
$$p \le |\nu_k| \le p \frac{\eta}{2}$$

Minimal mass for a satellite able to tilt Uranus

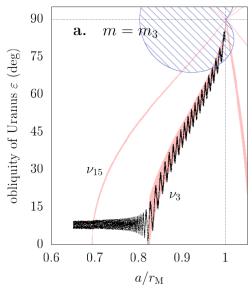
$$|\nu_k| \le p \frac{\eta}{2} = \frac{p}{4} \frac{m_s}{M_{\rm H}} \frac{r_M^2}{J_2 R_{\rm H}^2}$$

k	Identification	$(" \text{yr}^{-1})$	T _{lib} (Myr)	$\frac{m_{\min}/M}{(\times 10^{-5})}$	$\frac{m_k/M}{(\times 10^{-5})}$
15	$g_7 - g_8 + s_7$	-0.58033	3021	35	36
3	<i>S</i> ₈	-0.69189	115	41	44
9	$g_6 - g_7 + s_6$	-1.19906	519	71	79
7	$g_5 - g_7 + s_7$	-1.84625	92	110	129
5	$-g_5 + g_6 + s_6$	-2.35835	51	141	172
2	<i>S</i> 7	-3.00557	4	179	233
8	$-g_7 + g_8 + s_8$	-3.11725	115	186	244
6	$-g_5 + g_7 + s_7$	-4.16482	40	248	368

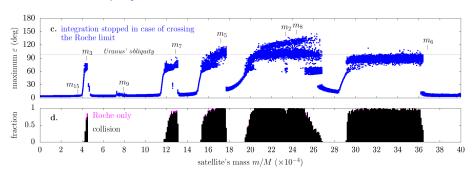
Resonance $\dot{\psi} = s_7 \ (m_2 = 2.3 \times 10^{-3} M_{\rm u})$



Example of tilting to a large obliquity

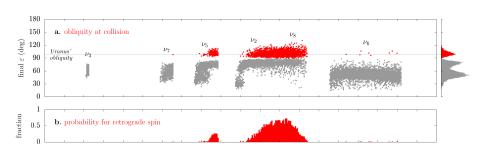


Maximum obliquity as a function of $m_{\rm s}$



Resonances 2, 5, 6 and 8 look to be potential candidates

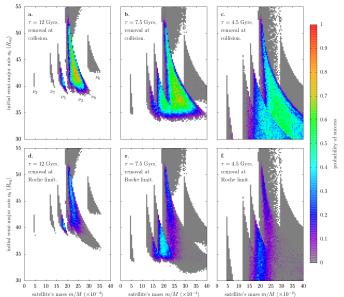
Obliquity at collision as a function of $m_{\rm s}$



Resonances 2 and 8 not only can reproduce Uranus' obliquity, but that is their most likely outcome !

- $lackbox{ Resonance 2}:\dot{\psi}pprox s_7:$ Forcing due to Uranus' ascending node
- ▶ Resonance 8 : $\dot{\psi} \approx s_8 + g_8 g_7$: Forcing due to Neptune's ascending node and Neptune and Uranus' periapsis.

Probability of success



Conclusion

- ► Provided that enough massive ancient satellite existed, this is a likely mechanism
- ▶ The tilting could also have been due to several satellite

Thank you for your attention