Dynamics of co-orbitals inside and outside a resonance chain :

An analytical co-orbital tidal model

Jérémy Couturier, Philippe Robutel, Alexandre, C. M. Correia

March 30, 2022

Some example of co-orbital bodies in the solar system

- ► Trojans of Jupiter (first discovery by Wolf, 1906).
- ► Some satellites of Saturn
- ► The famous triplet Saturn-Janus-Epimetheus, only example with comparable masses.

But no co-orbital planets.

Co-orbital exoplanets are predicted by the formation model Two scenarii of formation (Laughlin and Chambers, 2002)

- ► Accretion in situ at the Lagrangian point of a primary giant planet
 - \rightarrow maximum 0.6 Earth mass according to Beaugé et al. (2007).
 - $\rightarrow 5$ to 15 Earth mass according to Lyra et al. (2009).
- ightharpoonup Capture at the L_{4-5} point of an already existing planet
 - \rightarrow a high diversity of mass ratio (*Cresswell and Nelson, 2008*)

But their stability after the formation is not guaranteed

→ Pierens and Raymond 2014, Leleu et al. 2019

Assuming the existence, the detection is challenging

- ightharpoonup Mutual inclination ightarrow only one body transits.
- lackbox High mass ratio ightarrow only one body perturbs the radial velocity of the star.
- ► Large orbital period → only few transits per unit time & necessity of an almost zero mutual inclination.
- ightharpoonup Low orbital period ightarrow strong tidal interaction with the host star

Identical co-orbital (same mass, radius, tidal parameters) are always destroyed by tides (*Rodriguez et al., 2013, using numerical simulations*)

 \rightarrow The libration amplitude increases until close encounters between the planets destroys the configuration.

No analytical work has been undertaken so far.

Do tides always disrupt the system ? \rightarrow Yes

On what timescale ? \rightarrow Analytical expression depending on parameters

Hamiltonian of the conservative problem

$$\mathcal{H} = \mathcal{H}_K(\Lambda_1, \Lambda_2) + H_P(\Lambda_1, \Lambda_2, \lambda_1, \lambda_2, x_1, x_2, \tilde{x}_1, \tilde{x}_2), \tag{1}$$

$$\mathcal{H}_K(\Lambda_1, \Lambda_2) = -\sum_{j=1}^2 \frac{\beta_j^3 \mu_j^2}{2\Lambda_j^2}.$$
 (2)

The semi-major axes stay close to a quantity denoted by \bar{a} .

→ Expansion in the neighbourhood of

$$\Lambda^* = (\Lambda_1^*, \Lambda_2^*), \text{ with } \Lambda_j^* = m_j \sqrt{\mu_0 \bar{a}} \approx \Lambda_j.$$
(3)

Averaging over the fast orbital frequency

$$(\Lambda_1, \Lambda_2, \lambda_1, \lambda_2) \longmapsto (Z, Z_2, \phi, \phi_2) = (\Lambda_1 - \Lambda_1^{\star}, \Lambda_1 + \Lambda_2 - \Lambda_1^{\star} - \Lambda_2^{\star}, \lambda_1 - \lambda_2, \lambda_2).$$

 \rightarrow Average over ϕ_2

Expansion of \mathcal{H}_P

$$\mathcal{H}_{P} = \sum_{n \geq 0} \mathcal{H}_{2n} \quad \text{where} \quad \mathcal{H}_{2n} = \sum_{|\mathbf{p}| = 2n} \Psi_{\mathbf{p}}\left(\xi\right) X_{1}^{p_{1}} X_{2}^{p_{2}} \bar{X}_{1}^{\bar{p}_{1}} \bar{X}_{2}^{\bar{p}_{2}} \,. \tag{4}$$

 $p_1+p_2=\bar{p}_1+\bar{p}_2,$ (D'alembert rule),

$$\mathcal{H}_{0} = \frac{m}{m_{0}} \left(\cos \xi - (2 - 2 \cos \xi)^{-1/2} \right), \quad \left[\xi = \lambda_{1} - \lambda_{2} \right]$$

$$\mathcal{H}_{2} = \frac{1}{2} \frac{m}{m_{0}} \left\{ A_{h} \left(\xi \right) \left(X_{1} \bar{X}_{1} + X_{2} \bar{X}_{2} \right) + B_{h} \left(\xi \right) X_{1} \bar{X}_{2} + \bar{B}_{h} \left(\xi \right) \bar{X}_{1} X_{2} \right\}.$$
(5)

 X_j close to the eccentricity vector

$$X_j \approx e_j \exp(i\varpi_j).$$
 (6)

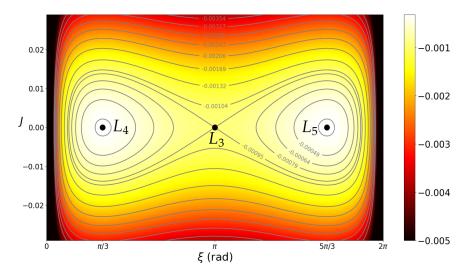
Invariance by rotation \rightarrow D'alembert rule $\rightarrow \mathcal{H}_{2n+1} = 0$ $\rightarrow X_1 = X_2 = 0$ is a stable manifold of the space phase.

What about the dynamics at zero eccentricity?

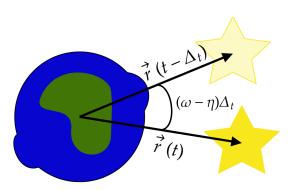
We study the one-degree-of-freedom Hamiltonian $\mathcal{H}_K + \mathcal{H}_0$

Space phase in the circular case

 L_4 and L_5 are energy maximizers $\to L_4$ and L_5 are tidally unstable.



The Mignard model, Mignard, 1979.



$$V(\mathbf{r}) = -\kappa_2^{(j)} \frac{\mathcal{G}m_i}{R_j} \left(\frac{R_j}{r}\right)^3 \left(\frac{R_j}{r_i^{\star}}\right)^3 P_2\left(\cos S\right), \quad \mathbf{r_i}^{\star} = \mathbf{r_i} \left(t - \Delta t_j\right).$$

Quality factor

$$Q_j^{-1}(\eta) = \sin(\eta \Delta t_j(\eta)) \approx \eta \Delta t_j(\eta). \tag{7}$$

Tidal (pseudo) Hamiltonian

$$\mathcal{H}_t = \mathcal{H}_t^1 + \mathcal{H}_t^2, \tag{8}$$

$$\mathcal{H}_t^j = -\kappa_2^{(j)} \mathcal{G} m_0^2 \frac{R_j^5}{r_j^3 r_j^{\bigstar 3}} P_2\left(\cos S\right), \quad S = \lambda_j - \lambda_j^{\bigstar} - \left(\theta_j - \theta_j^{\bigstar}\right). \tag{9}$$

We define the dissipation rate 1

dissipation rate of planet
$$j: q_j/Q_j = \kappa_2^{(j)} \frac{R_j^5}{\bar{a}^5} \eta \Delta t_j.$$
 (10)

We obtain an equation of the form ¹

$$\dot{\mathcal{X}} = F(\mathcal{X}), \quad \mathcal{X} = {}^{t}(\omega_{1}, \omega_{2}, J, J_{2}, \xi, X_{1}, X_{2}).$$
 (11)

¹Couturier, Robutel & Correia, 2021

Linearization of the differential system

in the vicinity of its equilibria \to Small perturbation of L_4 & L_5 .

Linear system

$$\dot{\mathcal{X}} = (\mathcal{Q}_0 + \mathcal{Q}_1) \, \mathcal{X}. \tag{12}$$

 \mathcal{Q}_0 conservative part, \mathcal{Q}_1 dissipative part.

$$Q_{0 \text{ or } 1} = \begin{pmatrix} * & 0_{5,2} \\ 0_{2,5} & * \end{pmatrix} \tag{13}$$

ightarrow Even in the dissipative case, the dynamics on (X_1,X_2) is uncoupled from the rest in the vicinity of the equilibrium.

In the absence of tides

Eigenvalues of Q_0 (Robutel & Pousse, 2013)

$$\{0, 0, 0, i\nu, -i\nu, ig_1, ig_2\}, \quad \nu = \sqrt{\frac{27\varepsilon}{4}}, \quad g_1 = \frac{27\varepsilon}{8}, \quad g_2 = 0.$$
 (14)

All the eigenvalues are pure imaginary → Quasi-periodic motion

With tidal dissipation

Eigenvalues of $Q_0 + Q_1$ (Couturier, Robutel & Correia, 2021)

$$\{\lambda_1, \lambda_2, 0, \overline{\lambda}, \overline{\lambda}, \lambda_{\mathsf{AL}}, \lambda_{\mathsf{L}}\}, \tag{15}$$

with (real parts are boxed)

$$\lambda_{j} = \left[-3\alpha_{j}^{-1} \frac{q_{j}}{Q_{j}} \mathbf{\hat{Y}}_{j}^{-2} \frac{m_{0}}{m_{j}} + 9\varepsilon^{-1} \frac{q_{j}}{Q_{j}} \right] < 0,$$

$$\mathbf{\hat{A}} = \left[\frac{9}{2} \varepsilon^{-1} \left(\frac{m_{1}}{m_{2}} \frac{q_{2}}{Q_{2}} + \frac{m_{2}}{m_{1}} \frac{q_{1}}{Q_{1}} \right) \right] + i\nu \left[1 + 13\varepsilon^{-1} \left(\frac{m_{1}}{m_{2}} q_{2} + \frac{m_{2}}{m_{1}} q_{1} \right) \right],$$

$$\begin{bmatrix} 2 & m_2 Q_2 & m_1 Q_1 \end{bmatrix} + i b \begin{bmatrix} 1 + 16c & m_2 & m_1 & q_1 \end{bmatrix},$$

$$\begin{bmatrix} 21 & m_1 & q_2 & m_2 & q_1 \end{bmatrix} + i b \begin{bmatrix} 1 + 16c & m_2 & m_1 & q_1 \end{bmatrix},$$

$$\lambda_{\mathsf{AL}} = \left[-\frac{21}{2} \varepsilon^{-1} \left(\frac{m_1}{m_2} \frac{q_2}{Q_2} + \frac{m_2}{m_1} \frac{q_1}{Q_1} \right) \right] + ig_1 \left[1 + \frac{20}{9} \varepsilon^{-2} \left(\frac{m_1}{m_2} q_2 + \frac{m_2}{m_1} q_1 \right) \right],$$

$$\lambda_{\mathsf{L}} = \left| -\frac{21}{2} \varepsilon^{-1} \left(\frac{q_1}{Q_1} + \frac{q_2}{Q_2} \right) \right| + \frac{15}{2} i \varepsilon^{-1} \left(q_1 + q_2 \right).$$

Characteristic timescales of evolution of the co-orbital angle¹

$$\tau_{\text{lib}} = \frac{1}{9\pi} \frac{\varepsilon}{q_1/Q_1 + q_2/Q_2} \frac{x(1+y)}{1+yx^2} T \propto \frac{x(1+y)}{1+yx^2} \bar{a}^{6.5}.$$
 (16)

with

$$x = \frac{m_1}{m_2}$$
 and $y = \frac{\text{dissipation rate}_2}{\text{dissipation rate}_1} = \frac{q_2 Q_1}{q_1 Q_2}$ (17)

Time to horse-shoe shaped orbits

$$\tau_{\mathsf{hs}} = \ln\left(\frac{60^{\circ}}{\Delta\xi}\right) \tau_{\mathsf{lib}} \tag{18}$$

where $\Delta \xi$ is the initial angular distance to L_{4-5}

¹Couturier, Robutel & Correia, 2021

Co-orbital lifetime

$$\tau_{\mathsf{dest}} \approx \tau_{\mathsf{hs}} = \frac{\varepsilon}{9\pi\Omega} \frac{x(1+y)}{1+yx^2} \ln\left(\frac{60^\circ}{\Delta\xi}\right) T,$$
(19)

For two co-orbital Earth-like planets initially 0.1° away from L_4 :

$$\tau_{\rm hs} = 3.771 \text{ Gyr } \left(\frac{\bar{a}}{0.04 \text{ AU}}\right)^{6.5} \left(\frac{m_0}{m_\odot}\right)^{-3/2},$$
(20)

Co-orbital pair	$ au_{hs}\left(Gyr\right)$	Co-orbital pair $ au_{hs}(Gy)$	
Earth & Earth	3.771	Earth & Moon	44.09
Earth & Mars	5.480	Earth & Jupiter	3.722
Earth & Io	2.086	Moon & Moon	50.76
Moon & Mars	28.16	Moon & Jupiter	50.63
Moon & Io	4.374	Mars & Mars	5.761
Mars & Jupiter	5.747	Mars & Io	2.248
Jupiter & Jupiter	0.7201	Jupiter & Io	2.072
lo & lo	2.072		

A tool to help with the detection of co-orbital exoplanets



Solid line $= \min$ (main sequence duration, universe age) Orange dot \rightarrow gas giant HD 102956 b Blue dot \rightarrow rocky planet HD 158259 c

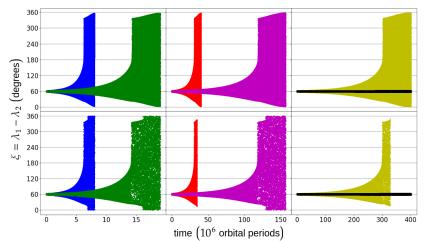
6 systems are numerically integrated

#	color	x	y	$ au_{lib}$
1	blue	10	100	1845 021
2	green	1/500	100	4 198 710
3	red	100	1/50	9 161 859
4	purple	100	1/200	34 893 952
5	yellow	1/10	100	89 304 263
6	black	100	10^{-5}	1607642323

Table: Characteristic timescales of increase of the libration amplitude of ξ , expressed in number of orbital periods.

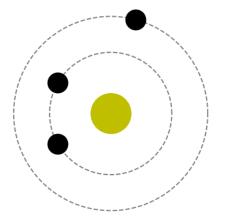
- ightharpoonup Top panel ightarrow Our model
- lacktriangle Bottom panel ightarrow Full n-body problem

$\textbf{Libration amplitude} \rightarrow \textbf{unbounded}$



Less than 1% error on time to horseshoe-shaped orbits.

We introduce a third planet in the planetary system



First order resonance between the co-orbital pair and the third planet.

The co-orbitals complete p+1 orbits while the third planet completes p orbits.

The resonance chain p:p:p+1

Angles of the form

$$-p\lambda_1 + (p+1)\lambda_3$$
 or $-p\lambda_2 + (p+1)\lambda_3$

are secularly evolving and cannot be averaged. The averaged Hamiltonian contains terms of the form

$$e_j \cos(-p\lambda_j + (p+1)\lambda_3 - \varpi_j)$$
 and $e_3 \cos(-p\lambda_j + (p+1)\lambda_3 - \varpi_3)$

+ more terms at second order in eccentricity

4 degrees of freedom associated with the angles

$$\begin{split} \xi &= \lambda_1 - \lambda_2 \\ \sigma_1 &= -p\lambda_2 + (p+1)\lambda_3 - \varpi_1 \\ \sigma_2 &= -p\lambda_2 + (p+1)\lambda_3 - \varpi_2 \\ \sigma_3 &= -p\lambda_2 + (p+1)\lambda_3 - \varpi_3 \end{split}$$

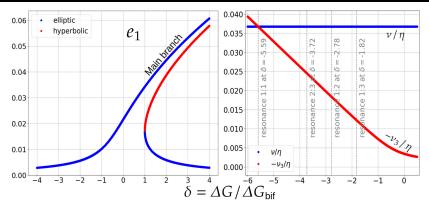


Figure: Left : Value of e_1 at the analytical equilibria of the resonance chain 1:1:2. Right: Libration frequency of ξ (blue) and ϖ_j (red).

The problem depends on a parameter δ related to a_1/a_3 , that is, to n_1/n_3

- $lackbox{igsian} \delta > 0 \
 ightarrow \ rac{n_1}{n_3} pprox rac{p+1}{p} \
 ightarrow \ {
 m system}$ close to the Keplerian resonance
- $lackbox{igsigma} \delta < 0 \
 ightarrow \ rac{n_1}{n_3} > rac{p+1}{p} \
 ightarrow \ {
 m system far from the Keplerian resonance}$

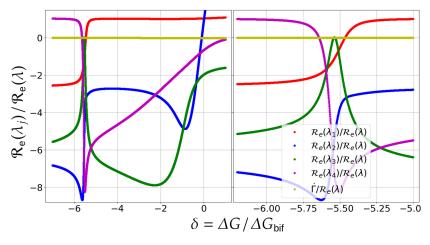


Figure: Real parts of the linearized differential system in the vicinity of the equilibria, with tidal dissipation.

At the 1:1 secular resonance between the libration frequency of ξ and the precession frequency of the pericentres \rightarrow Linear stability

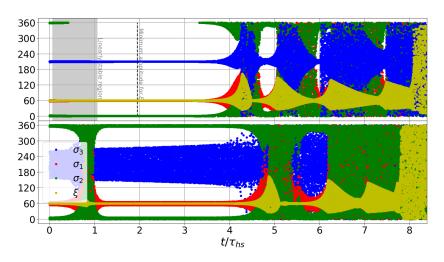


Figure: Evolution of the angles as a function of time

Conclusion

Co-orbital exoplanets are always unstable under tides.

But they live long if:

- lacktriangle They orbit far away from the star ightarrow challenging detection
- lacktriangle The mass repartition is very inequal ightarrow challenging detection
- lacktriangle They are within the resonance chain p:p:p+1

We have a satisfactory explanation as to why no co-orbital planet has been detected so far, even though formation models predict their existence.

Much more details in the associated papers :

- ► An analytical model for tidal evolution in co-orbital systems 10.1007/s10569-021-10032-w CM&DA
- ▶ Dynamics of co-orbital exoplanets in a first order resonance chain with tidal dissipation (under review at A&A)

Thank you for your attention

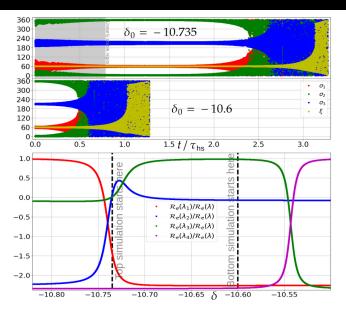


Figure: $m_3 = (m_1 + m_2)/32$

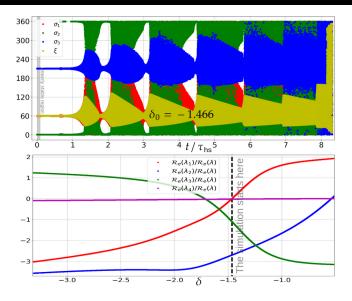


Figure: $m_3 = 8 (m_1 + m_2)$

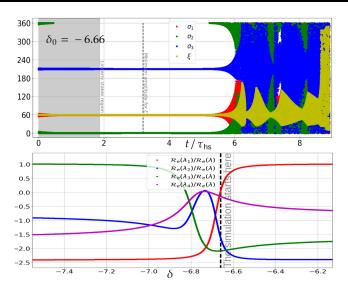


Figure: $m_3 = 0.29 (m_1 + m_2)$

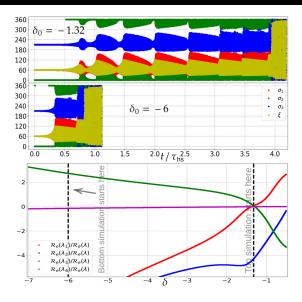


Figure: $m_3 = 19 (m_1 + m_2)$

Two different sets of equations

- ightharpoonup Top plot ightharpoonup the secular equations derived in this work.
- lacktriangle Bottom plot ightarrow A direct n-body model in cartesian coordinates.

$$\begin{split} \frac{d^2 \boldsymbol{r}_1}{dt^2} &= -\frac{\mu_1}{r_1^3} \boldsymbol{r}_1 + \mathcal{G} m_2 \left(\frac{\boldsymbol{r}_2 - \boldsymbol{r}_1}{|\boldsymbol{r}_2 - \boldsymbol{r}_1|^3} - \frac{\boldsymbol{r}_2}{r_2^3} \right) + \frac{\boldsymbol{f}_1}{\beta_1} + \frac{\boldsymbol{f}_2}{m_0} , \\ \frac{d^2 \boldsymbol{r}_2}{dt^2} &= -\frac{\mu_2}{r_2^3} \boldsymbol{r}_2 + \mathcal{G} m_1 \left(\frac{\boldsymbol{r}_1 - \boldsymbol{r}_2}{|\boldsymbol{r}_1 - \boldsymbol{r}_2|^3} - \frac{\boldsymbol{r}_1}{r_1^3} \right) + \frac{\boldsymbol{f}_2}{\beta_2} + \frac{\boldsymbol{f}_1}{m_0} , \\ \frac{d^2 \theta_i}{dt^2} &= -\frac{(\boldsymbol{r}_i \times \boldsymbol{f}_i) \cdot \boldsymbol{k}}{C_i} = -3 \frac{\kappa_{2,i} \mathcal{G} m_0^2 R_i^3}{\alpha_i m_i r_i^8} \Delta t_i \left[\frac{d\theta_i}{dt} r_i^2 - \left(\boldsymbol{r}_i \times \frac{d\boldsymbol{r}_i}{dt} \right) \cdot \boldsymbol{k} \right] , \\ \boldsymbol{f}_i &= -3 \frac{\kappa_{2,i} \mathcal{G} m_0^2 R_i^5}{r_i^8} \boldsymbol{r}_i \\ &- 3 \frac{\kappa_{2,i} \mathcal{G} m_0^2 R_i^5}{r_1^{10}} \Delta t_i \left[2 \left(\boldsymbol{r}_i \cdot \frac{d\boldsymbol{r}_i}{dt} \right) \boldsymbol{r}_i + r_i^2 \left(\frac{d\theta_i}{dt} \boldsymbol{r}_i \times \boldsymbol{k} + \frac{d\boldsymbol{r}_i}{dt} \right) \right] . \end{split}$$

The secular equations

$$\begin{split} \dot{\vartheta}_{j} &= -3\alpha_{j}^{-1} \frac{m_{0}}{m_{j}} \mathbf{\hat{\gamma}}_{j}^{-2} \frac{q_{j}}{Q_{j}} \mathcal{R}_{j}^{-12} \left\{ \vartheta_{j} + 3\left(1 - \mathcal{R}_{j}\right) + h_{2}^{j} \mathcal{R}_{j}^{-1} X_{j} \bar{X}_{j} \right. \\ &\left. + h_{4}^{j} \mathcal{R}_{j}^{-2} X_{j}^{2} \bar{X}_{j}^{2} \right\}, \\ \dot{J} &= -\frac{\partial \left(\mathcal{H}_{0} + \mathcal{H}_{2} + \mathcal{H}_{4}\right)}{\partial \xi} + \left(1 - \delta\right) \dot{J}_{2}^{1} - \delta \dot{J}_{2}^{2}, \\ \dot{J}_{2} &= \dot{J}_{2}^{1} + \dot{J}_{2}^{2}, \\ \dot{\xi} &= \frac{\partial \mathcal{H}_{K}}{\partial J} + 6q_{1} \frac{m_{0}}{m_{1}} \mathcal{R}_{1}^{-13} V_{2} \left(\mathcal{R}_{1}^{-1} X_{1} \bar{X}_{1}\right) - 6q_{2} \frac{m_{0}}{m_{2}} \mathcal{R}_{2}^{-13} V_{2} \left(\mathcal{R}_{2}^{-1} X_{2} \bar{X}_{2}\right), \\ \dot{X}_{j} &= -2i \frac{m}{m_{j}} \frac{\partial \left(\mathcal{H}_{2} + \mathcal{H}_{4}\right)}{\partial \bar{X}_{j}} \\ &- 3 \frac{q_{j}}{Q_{1}} \frac{m_{0}}{m_{2}} \mathcal{R}_{j}^{-13} X_{j} \left\{ p_{2}^{j} - \frac{5}{2} i Q_{j} + \frac{X_{j} \bar{X}_{j}}{\mathcal{R}_{z}} \left(p_{4}^{j} - \frac{65}{4} i Q_{j} \right) \right\}, \end{split}$$