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Introduction

Some example of co-orbital bodies in the solar system

I Trojans of Jupiter (�rst discovery by Wolf, 1906).

I Some satellites of Saturn

I The famous triplet Saturn-Janus-Epimetheus, only example with

comparable masses.

But no co-orbital planets.
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Introduction

Co-orbital exoplanets are predicted by the formation model
Two scenarii of formation (Laughlin and Chambers, 2002)

I Accretion in situ at the Lagrangian point of a primary giant planet

→ maximum 0.6 Earth mass according to Beaugé et al. (2007).
→ 5 to 15 Earth mass according to Lyra et al. (2009).

I Capture at the L4−5 point of an already existing planet

→ a high diversity of mass ratio (Cresswell and Nelson, 2008)
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Introduction

But their stability after the formation is not guaranteed
→ Pierens and Raymond 2014, Leleu et al. 2019

Assuming the existence, the detection is challenging

I Mutual inclination → only one body transits.

I High mass ratio → only one body perturbs the radial velocity of the

star.

I Large orbital period → only few transits per unit time & necessity of

an almost zero mutual inclination.

I Low orbital period → strong tidal interaction with the host star
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Introduction

Identical co-orbital (same mass, radius, tidal parameters) are always
destroyed by tides (Rodriguez et al., 2013, using numerical
simulations)
→ The libration amplitude increases until close encounters between the

planets destroys the con�guration.

No analytical work has been undertaken so far.

Do tides always disrupt the system ? → Yes

On what timescale ? → Analytical expression depending on parameters
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The conservative dynamics

Hamiltonian of the conservative problem

H = HK(Λ1,Λ2) +HP (Λ1,Λ2, λ1, λ2, x1, x2, x̃1, x̃2), (1)

HK(Λ1,Λ2) = −
2∑

j=1

β3
jµ

2
j

2Λ2
j

. (2)

The semi-major axes stay close to a quantity denoted by ā.

→ Expansion in the neighbourhood of

Λ? = (Λ?
1,Λ

?
2) , with Λ?

j = mj
√
µ0ā ≈ Λj . (3)

Averaging over the fast orbital frequency

(Λ1,Λ2, λ1, λ2) 7−→ (Z,Z2, φ, φ2) = (Λ1−Λ?
1, Λ1+Λ2−Λ?

1−Λ?
2, λ1−λ2, λ2).

→ Average over φ2.
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The conservative dynamics

Expansion of HP

HP =
∑
n≥0

H2n where H2n =
∑
|p|=2n

Ψp (ξ)Xp1
1 Xp2

2 X̄ p̄1
1 X̄ p̄2

2 . (4)

p1 + p2 = p̄1 + p̄2, (D'alembert rule),

H0 =
m

m0

(
cos ξ − (2− 2 cos ξ)−1/2

)
, ξ = λ1 − λ2

H2 =
1

2

m

m0

{
Ah (ξ)

(
X1X̄1 +X2X̄2

)
+Bh (ξ)X1X̄2 + B̄h (ξ) X̄1X2

}
.

(5)

Xj close to the eccentricity vector

Xj ≈ ej exp(i$j). (6)

Invariance by rotation → D'alembert rule → H2n+1 = 0
→ X1 = X2 = 0 is a stable manifold of the space phase.

What about the dynamics at zero eccentricity ?
We study the one-degree-of-freedom Hamiltonian HK +H0
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The conservative dynamics

Space phase in the circular case
L4 and L5 are energy maximizers → L4 and L5 are tidally unstable.
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Tidal evolution

The Mignard model, Mignard, 1979.

V (r) = −κ(j)
2

Gmi

Rj

(
Rj

r

)3
(
Rj

rFi

)3

P2 (cosS) , ri
F = ri (t−∆tj) .

Quality factor

Q−1
j (η) = sin(η∆tj(η)) ≈ η∆tj(η). (7)
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Tidal evolution

Tidal (pseudo) Hamiltonian

Ht = H1
t +H2

t , (8)

Hj
t = −κ(j)

2 Gm
2
0

R5
j

r3
j r

F3
j

P2 (cosS) , S = λj − λFj −
(
θj − θFj

)
. (9)

We de�ne the dissipation rate 1

dissipation rate of planet j : qj/Qj = κ
(j)
2

R5
j

ā5
η∆tj . (10)

We obtain an equation of the form 1

Ẋ = F (X ) , X = t (ω1, ω2, J, J2, ξ,X1, X2) . (11)

1Couturier, Robutel & Correia, 2021
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Tidal evolution

Linearization of the di�erential system
in the vicinity of its equilibria → Small perturbation of L4 & L5.

Linear system
Ẋ = (Q0 +Q1)X . (12)

Q0 conservative part, Q1 dissipative part.

Q 0 or 1 =

(
∗ 05,2

02,5 ∗

)
(13)

→ Even in the dissipative case, the dynamics on (X1, X2) is uncoupled

from the rest in the vicinity of the equilibrium.
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Tidal evolution

In the absence of tides

Eigenvalues of Q0 (Robutel & Pousse, 2013)

{0, 0, 0, iν,−iν, ig1, ig2} , ν =

√
27ε

4
, g1 =

27ε

8
, g2 = 0. (14)

All the eigenvalues are pure imaginary → Quasi-periodic motion
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Tidal evolution

With tidal dissipation
Eigenvalues of Q0 +Q1 (Couturier, Robutel & Correia, 2021){

λ1, λ2, 0,ϡ, ϡ̄, λAL, λL
}
, (15)

with (real parts are boxed)

λj = −3α−1
j

qj
Qj
ϙ
−2
j

m0

mj
+ 9ε−1 qj

Qj
< 0,

ϡ =
9

2
ε−1

(
m1

m2

q2

Q2
+
m2

m1

q1

Q1

)
+ iν

[
1 + 13ε−1

(
m1

m2
q2 +

m2

m1
q1

)]
,

λAL = −21

2
ε−1

(
m1

m2

q2

Q2
+
m2

m1

q1

Q1

)
+ ig1

[
1 +

20

9
ε−2

(
m1

m2
q2 +

m2

m1
q1

)]
,

λL = −21

2
ε−1

(
q1

Q1
+
q2

Q2

)
+

15

2
iε−1 (q1 + q2) .
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Tidal evolution

Characteristic timescales of evolution of the co-orbital angle1

τlib =
1

9π

ε

q1/Q1 + q2/Q2

x (1 + y)

1 + yx2
T ∝ x (1 + y)

1 + yx2
ā6.5. (16)

with

x =
m1

m2
and y =

dissipation rate2

dissipation rate1

=
q2Q1

q1Q2
(17)

Time to horse-shoe shaped orbits

τhs = ln

(
60◦

∆ξ

)
τlib (18)

where ∆ξ is the initial angular distance to L4−5

1Couturier, Robutel & Correia, 2021
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Tidal evolution

Co-orbital lifetime

τdest ≈ τhs =
ε

9πΩ

x (1 + y)

1 + yx2
ln

(
60◦

∆ξ

)
T, (19)

For two co-orbital Earth-like planets initially 0.1◦ away from L4 :

τhs = 3.771 Gyr
( ā

0.04 AU

)6.5
(
m0

m�

)−3/2

, (20)

Co-orbital pair τhs (Gyr) Co-orbital pair τhs (Gyr)

Earth & Earth 3.771 Earth & Moon 44.09
Earth & Mars 5.480 Earth & Jupiter 3.722
Earth & Io 2.086 Moon & Moon 50.76
Moon & Mars 28.16 Moon & Jupiter 50.63
Moon & Io 4.374 Mars & Mars 5.761
Mars & Jupiter 5.747 Mars & Io 2.248
Jupiter& Jupiter 0.7201 Jupiter & Io 2.072
Io & Io 2.072

Table: τhs for some co-orbital systems. The tidal parameters are those of [?] and
only the �ve bodies for which κ2/Q is well constrained have been included. The
close τhs between some systems is purely coincidental. It is due to the particular
value of Jupiter's κ2/Q and to the fact that this body is much larger and much
more massive than the other four.
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Tidal evolution

A tool to help with the detection of co-orbital exoplanets

Destruction time in Gyr

Solid line = min (main sequence duration, universe age)
Orange dot → gas giant HD 102956 b

Blue dot → rocky planet HD 158259 c
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Numerical simulations

6 systems are numerically integrated

# color x y τlib
1 blue 10 100 1 845 021

2 green 1/500 100 4 198 710

3 red 100 1/50 9 161 859

4 purple 100 1/200 34 893 952

5 yellow 1/10 100 89 304 263

6 black 100 10−5 1 607 642 323

Table: Characteristic timescales of increase of the libration amplitude of ξ,
expressed in number of orbital periods.
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Numerical simulations

I Top panel → Our model
I Bottom panel → Full n-body problem

Libration amplitude → unbounded

Less than 1% error on time to horseshoe-shaped orbits.
Jérémy Couturier An analytical co-orbital tidal model March 30, 2022 18 / 24



Resonance chain p : p : p + 1

We introduce a third planet in the planetary system

First order resonance between the co-orbital pair and the third
planet.

The co-orbitals complete p+ 1 orbits while the third planet completes p
orbits.

Jérémy Couturier An analytical co-orbital tidal model March 30, 2022 19 / 24



Resonance chain p : p : p + 1

The resonance chain p : p : p+ 1

Angles of the form

−pλ1 + (p+ 1)λ3 or − pλ2 + (p+ 1)λ3

are secularly evolving and cannot be averaged. The averaged Hamiltonian

contains terms of the form

ej cos (−pλj + (p+ 1)λ3 −$j) and e3 cos (−pλj + (p+ 1)λ3 −$3)

+ more terms at second order in eccentricity

4 degrees of freedom associated with the angles

ξ = λ1 − λ2

σ1 = −pλ2 + (p+ 1)λ3 −$1

σ2 = −pλ2 + (p+ 1)λ3 −$2

σ3 = −pλ2 + (p+ 1)λ3 −$3
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Resonance chain p : p : p + 1

Figure: Left : Value of e1 at the analytical equilibria of the resonance chain
1 : 1 : 2. Right: Libration frequency of ξ (blue) and $j (red).

The problem depends on a parameter δ related to a1/a3, that is, to n1/n3

I δ > 0 → n1
n3
≈ p+1

p → system close to the Keplerian resonance

I δ < 0 → n1
n3
> p+1

p → system far from the Keplerian resonance
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Resonance chain p : p : p + 1

Figure: Real parts of the linearized di�erential system in the vicinity of the
equilibria, with tidal dissipation.

At the 1 : 1 secular resonance between the libration frequency of ξ
and the precession frquency of the pericentres → Linear stability
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Resonance chain p : p : p + 1

Figure: Evolution of the angles as a function of time
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Conclusion

Conclusion
Co-orbital exoplanets are always unstable under tides.

But they live long if :
I They orbit far away from the star → challenging detection
I The mass repartition is very inequal → challenging detection
I They are within the resonance chain p : p : p+ 1

We have a satisfactory explanation as to why no co-orbital planet
has been detected so far, even though formation models predict
their existence.

Much more details in the associated papers :
I An analytical model for tidal evolution in co-orbital systems

10.1007/s10569-021-10032-w CM&DA
I Dynamics of co-orbital exoplanets in a �rst order resonance chain with

tidal dissipation (under review at A&A)

Thank you for your attention
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Figure: m3 = (m1 +m2) /32
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Figure: m3 = 8 (m1 +m2)
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Figure: m3 = 0.29 (m1 +m2)
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Figure: m3 = 19 (m1 +m2)
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Two di�erent sets of equations

I Top plot → the secular equations derived in this work.

I Bottom plot → A direct n-body model in cartesian coordinates.

d2r1

dt2
= −µ1

r3
1

r1 + Gm2

(
r2 − r1

|r2 − r1|3
− r2

r3
2

)
+

f1

β1
+

f2

m0
,

d2r2

dt2
= −µ2

r3
2

r2 + Gm1

(
r1 − r2

|r1 − r2|3
− r1

r3
1

)
+

f2

β2
+

f1

m0
,

d2θi
dt2

= −(ri × fi) · k
Ci

= −3
κ2,iGm2

0R
3
i

αimir8
i

∆ti

[
dθi
dt

r2
i −

(
ri ×

dri
dt

)
· k
]
,

fi = −3
κ2,iGm2

0R
5
i

r8
i

ri

− 3
κ2,iGm2

0R
5
i

r10
i

∆ti

[
2

(
ri ·

dri
dt

)
ri + r2

i

(
dθi
dt

ri × k +
dri
dt

)]
.
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The secular equations

ϑ̇j = −3α−1
j

m0

mj
ϙ
−2
j

qj
Qj
R−12

j

{
ϑj + 3 (1−Rj) + hj2R

−1
j XjX̄j

+hj4R
−2
j X2

j X̄
2
j

}
,

J̇ = −∂ (H0 +H2 +H4)

∂ξ
+ (1− δ) J̇1

2 − δJ̇2
2 ,

J̇2 = J̇1
2 + J̇2

2 ,

ξ̇ =
∂HK

∂J
+ 6q1

m0

m1
R−13

1 V2

(
R−1

1 X1X̄1

)
− 6q2

m0

m2
R−13

2 V2

(
R−1

2 X2X̄2

)
,

Ẋj = −2i
m

mj

∂ (H2 +H4)

∂X̄j

− 3
qj
Qj

m0

mj
R−13

j Xj

{
pj2 −

5

2
iQj +

XjX̄j

Rj

(
pj4 −

65

4
iQj

)}
,
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