An analytical  tidal evolution

in co-orbital systems.
Application to exoplanets
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Introduction

Euler & Lagrange fixed points

Unstable whatever the planetary masses

Stable in the conservative case provided the Gascheau condition is fulfilled : —— < —
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Introduction

Some example of co-orbital bodies in the solar system
» Trojans of Jupiter (first discovery by Wolf, 1906).
» Some satellites of Saturn

» The famous triplet Saturn-Janus-Epimetheus, only example with
comparable masses.

But no co-orbital planets.
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Introduction

Co-orbital exoplanets are predicted by the formation model
Two scenarii of formation (Laughlin and Chambers, 2002)
» Accretion in situ at the Lagrangian point of a primary giant planet
— maximum 0.6 Earth mass according to Beaugé et al. (2007).
— 5 to 15 Earth mass according to Lyra et al. (2009).
» Planet-planet gravitational scattering
— a high diversity of mass ratio (Cresswell and Nelson, 2008)
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Introduction

But their stability after the formation is not guaranteed
— Pierens and Raymond 2014, Leleu et al. 2019

Assuming the existence, the detection is challenging
» Mutual inclination — only one body transits.
» High mass ratio — only one body perturbs the radial velocity of the
star.

» Large orbital period — only few transits per unit time & necessity of
an almost zero mutual inclination.

» Low orbital period — strong tidal interaction with the host star
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Introduction

Identical co-orbital (same mass, radius, tidal parameters) are always
destroyed by tides (Rodriguez et al., 2013, using numerical
simulations)

— The libration amplitude increases until close encounters between the
planets destroys the configuration.

No analytical work has been undertaken so far.
Do tides always disrupt the system 7
If so, on what timescale ?
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The conservative dynamics

Hamiltonian of the conservative problem

H =Hr (A, A2) + Hp(A1, Ao, A1, Ao, 21, 22, T1, Z2), (1)
2 3,2
5515

Ay ==Y 2 2

Hi (A1, A2) 2 2A§ (2)

The semi-major axes stay close to a quantity denoted by a.

— Expansion in the neighbourhood of the resonance

A= (AT, M%), with AT =mj\/poa = A;. (3)
Averaging over the fast orbital frequency
(A1, Ao, A1y Ao) == (2, Z2, ¢, ¢2) = (A1 —AT, Mi+Aa—AT—A, Ai—A2, Ao).

— Average over ¢s.
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The conservative dynamics

Expansion of Hp

Hp =) Hon where Hop= > U, ()XPXPXPXEE.  (4)
nz0 Ip|=2n

p1+p2 =p1 +p2, (D'alembert rule),
7-[02ﬁ(cosf—(2—2cosf)_l/2>7 E=M— X

mo
1m

()

My — {Ah () (X1X1 + XaXa) + Bi (€) X1 Xz + B (€) Xlxz} |

2m0

X close to the eccentricity vector
X; ~ ejexp(iw;). (6)

Invariance by rotation — D’alembert rule — Hsy, 11 =0
— X1 = X9 = 0 is a stable manifold of the space phase.

What about the dynamics at zero eccentricity ?
We study the one-degree-of-freedom Hamiltonian Hyx + Ho
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The conservative dynamics

Space phase in the circular case
Ly and Ls are energy maximizers — L4 and Ls are tidally unstable.
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The conservative dynamics

Eccentric dynamics (Analytical approach of Robutel & Pousse, 2013)

<X1> _ i (m2An(E(®) maBi(E(t) <X1> )
X mo \m1Bp(£(t)) miAn(E(t))) \X2/)’

Easy analytical solution if £ () is constant, that is, at L.

278

Two eigenvalues igo = 0 and ig; = 15

— eigenvector associated with g, = 0 (a whole family of fixed points)

im/3
(e 1 > , thatis e; = ey and wy; —wy = /3 (0 in horseshoe).

— eigenvector associated with ¢g; # 0 (a family of periodic orbits)

m 67,47r/3 e m )
( 2 , thatis - =—2 and @ — wy = 47 /3 (7 in horseshoe).
mi €2 mi
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The conservative dynamics

Eccentric dynamics (Numerical approach of Giuponne et al, 2010)

Reduction of the total angular momentum
— Only two degrees of freedom

» & = A1 — )9 and its associated action.

» Aw = wy — wsy and its associated action.

The Lagrange and anti-Lagrange eigen-directions now both appear
as fixed points, not only Lagrange.

Problem for analytical work :
— The actions associated to £ and Aw degenerate at zero eccentricity.
The approach of Robutel & Pousse is more suitable for analytical work.
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The Mignard model, Mignard, 1979.

V(I‘) = —K2j g];nl <Fij> (R‘i> PQ (COS S) y I’i* =Tj (t - At]‘) .
7

Quality factor
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Tidal evolution

Only the main contribution is retained : tides raised by the star on the
planets and felt by the star.

Assuming R x m!/3 and since k2,0 ~ 0.02 while ro ; = 0.5

2R o
A R gmpRy Koy

B ke omiR) & mi\ /3
= I 2 =20 ()«
mo
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Tidal evolution

Tidal (pseudo) Hamiltonian

He = H + 12, (10)
TP S R S S
t = 2,5 07“37"*3 2 ) - J J Jj )
JJ
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Tidal evolution

Same transformations as in the conservative case, but no expansion
over the semi major-axes.

. m _ . . .
] = g "R ORE {Ag 15545+ 0 (1) } ,

j_1 3 * * 5 R\’
At:Z+ZCOS2()‘j_)‘j —€j+9j), quligyj?j:ﬁgd' E .

We define the dissipation rate !

5
dissipation rate of planet j : ¢;/Q; = Ko j—21AL;. (12)
a
We obtain an equation of the form !
X:F(X)) X = t(wlaw2aJ7J27€aX17X2)' (13)

Y Couturier, Robutel & Correia, 2021
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Tidal evolution

Linearization of the differential system
in the vicinity of its equilibria — Small perturbation of L4 & Ls.

Linear system '
X =(Q+ 91)X. (14)

Qp conservative part, Q1 dissipative part.

Qoor1 = < i 05’2> (15)

025 %

— Even in the dissipative case, the dynamics on (X7, X32) is uncoupled
from the rest in the vicinity of the equilibrium.
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Tidal evolution

Eigenvalues of Qy (Robutel & Pousse, 2013)
27¢ 27¢

{0,0,0,iy, _iy)ighng}a V= T) g1 = ?7 g2 = 0. (16)
Eigenvalues of Qg + Q1 (Couturier, Robutel & Correia, 2021)
{1, 22,0,2, 2, AL, ALt (17)
with (real parts are boxed)
-19 52" -14j
N =|=3a; ' e — +9e7 | <,
’ % Qj 7 m; Qj
9
A=lpe (M e L 11 (Mt 2.
2 mo QQ ma Ql mo my

21 m m . 20 o, /m m
AAL = —5_1< 1q2+ 2Q1> tigy [1+€ 2(1qz+2q1>],
2 ma Q2 m1 Q1 9 mso

21 (@ | @ 15. 4
N = |-t = .
L £ <Q1 +Q2) + e (g1 + q2)

Jérémy Couturier Tidal evolution in co-orbital systems October 18, 2021 17 /25



Tidal evolution

Characteristic timescales of evolution (7 is the orbital period)

-1
€ q1 q2
L= — + T,
FT2In <Q1 Q2>
—1
£ <m2 4 +W1Q2> T, (18)

TAL = 77—
2l \m1 Q1 m2 Q2
7

Tib = STAL-

Libration excitation 2
1 g TAL TAL _6.5
ip= ———_TALp TALZ6eS 19
P91 /Q1+q2/Q2 1 TL (19)

- _ __ dissipation rate;, _ q2Q1
We define z = ml/m2 and y= dissipation rate; ~— q1Q2

Ratio between the eccentric damping timescales
1
L z(1+y) (20)

TL 1—|—y902'

2Couturier, Robutel & Correia, 2021
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Tidal evolution
mi __ dissipation rate,
Y= dissipation rate;

What are the anti-Lagrange-like systems ? x = 1,
2

0
logqo x

Those with a very inequal mass repartition.
October 18, 2021
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Numerical simulations

Two different sets of equations
» Top plot — the secular equations derived in this work.

» Bottom plot — A direct n-body model in cartesian coordinates.

d’r ro—7T r
21: &m-i-ng 2713—% —&-ﬁ—i—ﬁ
dt r$ lro —r]3 13

d>r r—r r
ar_ _ ”2r2+gm1(1 2,—1>+f2+f1,

dt2 Ty ‘1“1 — 7"2|‘5 T:f BQ mo
d*0; i i) - i R db; dr;
dt? -t ><Cj-:> - 3%&1{& 12_<”Xc;,>'k] ’
iGmgRY
fi= 30T ngo T
7S

)

K2 GMGR; dr; o [ db; dr;
_310At|: ( % ’I‘Z'—&-TZ- Erzxk‘i_ﬁ
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Numerical simulations

The secular equations

: 1Mo 2 qj 12 . Jp-ly. Y.
U; = =3 m]?J Q]R {19 +3(1=Rj) + R, X;X;

—2v2v2
THIR; ijj},

j:78(H0+H2+H4)

+(1—6)Ji —68J2,

0§
Jo = Ji+J2,
: 8HK 13 1 13 1
§=-—F—+6 1—731 Vo (RT'X1Xy) — 6(;2—732 Va (R3 ' X2 Xs),
X; = —2i .m0 (HQ + Hy)
mj 8Xj
B g X; — 0.
om { ZQJ R; <p4 %)
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Numerical simulations

Libration amplitude = — unbounded
Blue, green & red — short life.
Purple, yellow & black — long life.
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Numerical simulations

Blue, green & red — settle into Lagrange.
Purple, yellow & black — settle into anti-Lagrange.
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A tool for the detection of co-orbital exoplanets

A tool to help with the detection of co-orbital exoplanets
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Conclusion

Co-orbital exoplanets are always unstable under tides.

But they live long if :
» They orbit far away from the star — challenging detection

» The mass repartition is very inequal — challenging detection

We have a satisfactory explanation as to why no co-orbital planet
has been detected so far, even though formation models predict
their existence.

Much more details in the associated paper :
An analytical model for tidal evolution in co-orbital systems
10.1007/510569-021-10032-w CM&DA

Thank you for your attention
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