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Introduction

Euler & Lagrange �xed points
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Introduction

Some example of co-orbital bodies in the solar system

I Trojans of Jupiter (�rst discovery by Wolf, 1906).

I Some satellites of Saturn

I The famous triplet Saturn-Janus-Epimetheus, only example with

comparable masses.

But no co-orbital planets.
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Introduction

Co-orbital exoplanets are predicted by the formation model
Two scenarii of formation (Laughlin and Chambers, 2002)

I Accretion in situ at the Lagrangian point of a primary giant planet

→ maximum 0.6 Earth mass according to Beaugé et al. (2007).
→ 5 to 15 Earth mass according to Lyra et al. (2009).

I Planet-planet gravitational scattering

→ a high diversity of mass ratio (Cresswell and Nelson, 2008)
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Introduction

But their stability after the formation is not guaranteed
→ Pierens and Raymond 2014, Leleu et al. 2019

Assuming the existence, the detection is challenging

I Mutual inclination → only one body transits.

I High mass ratio → only one body perturbs the radial velocity of the

star.

I Large orbital period → only few transits per unit time & necessity of

an almost zero mutual inclination.

I Low orbital period → strong tidal interaction with the host star
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Introduction

Identical co-orbital (same mass, radius, tidal parameters) are always
destroyed by tides (Rodriguez et al., 2013, using numerical
simulations)
→ The libration amplitude increases until close encounters between the

planets destroys the con�guration.

No analytical work has been undertaken so far.
Do tides always disrupt the system ?
If so, on what timescale ?
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The conservative dynamics

Hamiltonian of the conservative problem

H = HK(Λ1,Λ2) +HP (Λ1,Λ2, λ1, λ2, x1, x2, x̃1, x̃2), (1)

HK(Λ1,Λ2) = −
2∑
j=1

β3
jµ

2
j

2Λ2
j

. (2)

The semi-major axes stay close to a quantity denoted by ā.

→ Expansion in the neighbourhood of the resonance

Λ? = (Λ?1,Λ
?
2) , with Λ?j = mj

√
µ0ā ≈ Λj . (3)

Averaging over the fast orbital frequency

(Λ1,Λ2, λ1, λ2) 7−→ (Z,Z2, φ, φ2) = (Λ1−Λ?1, Λ1+Λ2−Λ?1−Λ?2, λ1−λ2, λ2).

→ Average over φ2.
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The conservative dynamics

Expansion of HP

HP =
∑
n≥0

H2n where H2n =
∑
|p|=2n

Ψp (ξ)Xp1
1 Xp2

2 X̄ p̄1
1 X̄ p̄2

2 . (4)

p1 + p2 = p̄1 + p̄2, (D'alembert rule),

H0 =
m

m0

(
cos ξ − (2− 2 cos ξ)−1/2

)
, ξ = λ1 − λ2

H2 =
1

2

m

m0

{
Ah (ξ)

(
X1X̄1 +X2X̄2

)
+Bh (ξ)X1X̄2 + B̄h (ξ) X̄1X2

}
.

(5)

Xj close to the eccentricity vector

Xj ≈ ej exp(i$j). (6)

Invariance by rotation → D'alembert rule → H2n+1 = 0
→ X1 = X2 = 0 is a stable manifold of the space phase.

What about the dynamics at zero eccentricity ?
We study the one-degree-of-freedom Hamiltonian HK +H0
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The conservative dynamics

Space phase in the circular case
L4 and L5 are energy maximizers → L4 and L5 are tidally unstable.

Libration frequency

O
(
ε1/2

)
in tadpole and early horseshoe.

(√
27ε

4
at L4,5

)
O
(
ε1/3

)
in late horseshoe. ε = (m1 +m2) /m0
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The conservative dynamics

Eccentric dynamics (Analytical approach of Robutel & Pousse, 2013)(
Ẋ1

Ẋ2

)
= − i

m0

(
m2Ah(ξ(t)) m2B̄h(ξ(t))

m1Bh(ξ(t)) m1Ah(ξ(t))

)(
X1

X2

)
, (7)

Easy analytical solution if ξ (t) is constant, that is, at L4,5.

Two eigenvalues ig2 = 0 and ig1 = i27ε
8 .

→ eigenvector associated with g2 = 0 (a whole family of �xed points)(
eiπ/3

1

)
, that is e1 = e2 and $1 −$2 = π/3 (0 in horseshoe).

→ eigenvector associated with g1 6= 0 (a family of periodic orbits)(
m2e

i4π/3

m1

)
, that is

e1

e2
=
m2

m1
and $1 −$2 = 4π/3 (π in horseshoe).
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The conservative dynamics

Eccentric dynamics (Numerical approach of Giuponne et al, 2010)

Reduction of the total angular momentum
→ Only two degrees of freedom

I ξ = λ1 − λ2 and its associated action.

I ∆$ = $1 −$2 and its associated action.

The Lagrange and anti-Lagrange eigen-directions now both appear
as �xed points, not only Lagrange.

Problem for analytical work :
→ The actions associated to ξ and ∆$ degenerate at zero eccentricity.

The approach of Robutel & Pousse is more suitable for analytical work.
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Tidal evolution

The Mignard model, Mignard, 1979.

V (r) = −κ2,j
Gmi

Rj

(
Rj
r

)3
(
Rj

rFi

)3

P2 (cosS) , ri
F = ri (t−∆tj) .

Quality factor

Q−1
j (η) = sin(η∆tj(η)) ≈ η∆tj(η). (8)
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Tidal evolution

Only the main contribution is retained : tides raised by the star on the

planets and felt by the star.

Assuming R ∝ m1/3 and since κ2,0 ≈ 0.02 while κ2,j ≈ 0.5

B

A
=
κ2,0m

2
jR

5
0

κ2,jm2
0R

5
j

=
κ2,0

κ2,j

(
mj

m0

)1/3

� 1. (9)
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Tidal evolution

Tidal (pseudo) Hamiltonian

Ht = H1
t +H2

t , (10)

Hjt = −κ2,jGm2
0

R5
j

r3
j r

F3
j

P2 (cosS) , S = λj − λFj −
(
θj − θFj

)
. (11)
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Tidal evolution

Same transformations as in the conservative case, but no expansion
over the semi major-axes.

Hjt = −qj
m0

m
R−6
j R

F−6
j

{
Ajt + Ξj2 + Ξj4 +O

(
|Xj |6

)}
,

Ajt =
1

4
+

3

4
cos 2

(
λj − λFj − θj + θFj

)
, qj = κ2,jϙ

5
j = κ2,j

(
Rj
ā

)5

.

We de�ne the dissipation rate 1

dissipation rate of planet j : qj/Qj = κ2,j

R5
j

ā5
η∆tj . (12)

We obtain an equation of the form 1

Ẋ = F (X ) , X = t (ω1, ω2, J, J2, ξ,X1, X2) . (13)

1Couturier, Robutel & Correia, 2021
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Tidal evolution

Linearization of the di�erential system
in the vicinity of its equilibria → Small perturbation of L4 & L5.

Linear system
Ẋ = (Q0 +Q1)X . (14)

Q0 conservative part, Q1 dissipative part.

Q 0 or 1 =

(
∗ 05,2

02,5 ∗

)
(15)

→ Even in the dissipative case, the dynamics on (X1, X2) is uncoupled

from the rest in the vicinity of the equilibrium.
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Tidal evolution

Eigenvalues of Q0 (Robutel & Pousse, 2013)

{0, 0, 0, iν,−iν, ig1, ig2} , ν =

√
27ε

4
, g1 =

27ε

8
, g2 = 0. (16)

Eigenvalues of Q0 +Q1 (Couturier, Robutel & Correia, 2021){
λ1, λ2, 0,ϡ, ϡ̄, λAL, λL

}
, (17)

with (real parts are boxed)

λj = −3α−1
j

qj
Qj
ϙ
−2
j

m0

mj
+ 9ε−1 qj

Qj
< 0,

ϡ =
9

2
ε−1

(
m1

m2

q2

Q2
+
m2

m1

q1

Q1

)
+ iν

[
1 + 13ε−1

(
m1

m2
q2 +

m2

m1
q1

)]
,

λAL = −21

2
ε−1

(
m1

m2

q2

Q2
+
m2

m1

q1

Q1

)
+ ig1

[
1 +

20

9
ε−2

(
m1

m2
q2 +

m2

m1
q1

)]
,

λL = −21

2
ε−1

(
q1

Q1
+
q2

Q2

)
+

15

2
iε−1 (q1 + q2) .
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Tidal evolution

Characteristic timescales of evolution (T is the orbital period)

τL =
ε

21π

(
q1

Q1
+
q2

Q2

)−1

T,

τAL =
ε

21π

(
m2

m1

q1

Q1
+
m1

m2

q2

Q2

)−1

T,

τlib =
7

3
τAL.

(18)

Libration excitation 2

τlib =
1

9π

ε

q1/Q1 + q2/Q2

τAL
τL
T ∝ τAL

τL
ā6.5. (19)

We de�ne x = m1/m2 and y = dissipation rate2
dissipation rate1

= q2Q1

q1Q2

Ratio between the eccentric damping timescales 2

τAL
τL

=
x (1 + y)

1 + yx2
. (20)

2Couturier, Robutel & Correia, 2021
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Tidal evolution

What are the anti-Lagrange-like systems ? x = m1
m2

, y = dissipation rate2
dissipation rate1

Those with a very inequal mass repartition.
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Numerical simulations

Two di�erent sets of equations

I Top plot → the secular equations derived in this work.

I Bottom plot → A direct n-body model in cartesian coordinates.

d2r1

dt2
= −µ1

r3
1

r1 + Gm2

(
r2 − r1

|r2 − r1|3
− r2

r3
2

)
+

f1

β1
+

f2

m0
,

d2r2

dt2
= −µ2

r3
2

r2 + Gm1

(
r1 − r2

|r1 − r2|3
− r1

r3
1

)
+

f2

β2
+

f1

m0
,

d2θi
dt2

= −(ri × fi) · k
Ci

= −3
κ2,iGm2

0R
3
i

αimir8
i

∆ti

[
dθi
dt

r2
i −

(
ri ×

dri
dt

)
· k
]
,

fi = −3
κ2,iGm2

0R
5
i

r8
i

ri

− 3
κ2,iGm2

0R
5
i

r10
i

∆ti

[
2

(
ri ·

dri
dt

)
ri + r2

i

(
dθi
dt

ri × k +
dri
dt

)]
.
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Numerical simulations

The secular equations

ϑ̇j = −3α−1
j

m0

mj
ϙ
−2
j

qj
Qj
R−12
j

{
ϑj + 3 (1−Rj) + hj2R

−1
j XjX̄j

+hj4R
−2
j X2

j X̄
2
j

}
,

J̇ = −∂ (H0 +H2 +H4)

∂ξ
+ (1− δ) J̇1

2 − δJ̇2
2 ,

J̇2 = J̇1
2 + J̇2

2 ,

ξ̇ =
∂HK
∂J

+ 6q1
m0

m1
R−13

1 V2

(
R−1

1 X1X̄1

)
− 6q2

m0

m2
R−13

2 V2

(
R−1

2 X2X̄2

)
,

Ẋj = −2i
m

mj

∂ (H2 +H4)

∂X̄j

− 3
qj
Qj

m0

mj
R−13
j Xj

{
pj2 −

5

2
iQj +

XjX̄j

Rj

(
pj4 −

65

4
iQj

)}
,
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Numerical simulations

Libration amplitude → unbounded
Blue, green & red → short life.
Purple, yellow & black → long life.
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Numerical simulations

Blue, green & red → settle into Lagrange.
Purple, yellow & black → settle into anti-Lagrange.
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A tool for the detection of co-orbital exoplanets

A tool to help with the detection of co-orbital exoplanets

Destruction time in Gyr

Solid line = min (main sequence duration, universe age)
Orange dot → gas giant HD 102956 b

Blue dot → rocky planet HD 158259 c
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Conclusion

Conclusion

Co-orbital exoplanets are always unstable under tides.

But they live long if :

I They orbit far away from the star → challenging detection

I The mass repartition is very inequal → challenging detection

We have a satisfactory explanation as to why no co-orbital planet
has been detected so far, even though formation models predict
their existence.

Much more details in the associated paper :
An analytical model for tidal evolution in co-orbital systems

10.1007/s10569-021-10032-w CM&DA

Thank you for your attention
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